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Abstract. User-defined tokens —both fungible ERC-20 and non-fungible ERC-721 tokens—
are central to the majority of contracts deployed on Ethereum. User-defined tokens are non-
native on Ethereum; i.e., they are not directly supported by the ledger, but require custom
code. This makes them unnecessarily inefficient, expensive, and complex.
The Extended UTXO Model (EUTXO) [4] has been introduced as a generalisation of Bitcoin-
style UTXO ledgers, allowing support of more expressive smart contracts, approaching the
functionality available to contracts on Ethereum. Specifically, a bisimulation argument estab-
lished a formal relationship between the EUTXO ledger and a general form of state machines.
Nevertheless, transaction outputs in the EUTXO model lock integral quantities of a single
native cryptocurrency only, just like Bitcoin.
In this paper, we study a generalisation of the EUTXO ledger model with native user-defined
tokens. Following the approach proposed in a companion paper [3] for the simpler case of
plain Bitcoin-style UTXO ledgers, we generalise transaction outputs to lock not merely coins
of a single cryptocurrency, but entire token bundles, including custom tokens whose forging
is controlled by forging policy scripts. We show that this leads to a rich ledger model that
supports a broad range of interesting use cases.
Our main technical contribution is a formalisation of the multi-asset EUTXO ledger in Agda,
which we use to establish that the ledger with custom tokens is strictly more expressive than
the original EUTXO ledger. In particular, we state and prove a transfer result for inductive
and temporal properties from state machines to the multi-asset EUTXO ledger, which was
out of scope for the single-currency EUTXO ledger. In practical terms, the resulting system
is the basis for the smart contract system of the Cardano blockchain.
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1 Introduction

If we look at contracts on Ethereum in terms of their use and the monetary values that they
process, then it becomes apparent that so-called user-defined (or custom) tokens play a central role
in that ecosystem. The two most common token types are fungible tokens, following the ERC-20
standard [14], and non-fungible tokens, following the ERC-721 standard [6].

On Ethereum, ERC-20 and ERC-721 tokens are fundamentally different from the native cryp-
tocurrency, Ether, in that their creation and use always involves user-defined custom code — they
are not directly supported by the underlying ledger, and hence, are non-native.

This makes them unnecessarily inefficient, expensive, and complex. Although the ledger already
includes facilities to manage and maintain a currency, this functionality is replicated in interpreted
user-level code, which is inherently less efficient. Moreover, the execution of user-code needs to be
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paid for (in gas), which leads to significant costs. Finally, the ERC-20 and ERC-721 token code
gets replicated and adapted, instead of being part of the system, which complicates the creation
and use of tokens and leaves room for human error.

The alternative to user-level token code is a ledger that supports native tokens. In other words, a
ledger that directly supports (1) the creation of new user-defined token or asset types, (2) the forging
of those tokens, and (3) the transfer of custom token ownership between multiple participants. In
a companion paper [3], we propose a generalisation of Bitcoin-style UTXO ledgers, which we are
calling UTXOma(“ma” for “multi-asset”), adding native tokens by way of so-called token bundles
and domain-specific forging policy scripts, entirely without the need to resort to a general-purpose
scripting system.

Independently, we previously introduced the Extended UTXO Model (EUTXO) [4] as an or-
thogonal generalisation of Bitcoin-style UTXO ledgers, enabling support of more expressive smart
contracts, with functionality similar to contracts on Ethereum. To support user-defined tokens or
currencies on EUTXO, we could follow Ethereum’s path and define standards corresponding to
ERC-20 and ERC-721 for fungible and non-fungible tokens, but then we would be subject to the
same disadvantages that non-native tokens have on Ethereum.

In this paper, to avoid the disadvantages of non-native tokens, we investigate the combination
of the two previously mentioned extensions of the plain UTXO model: we add UTXOma-style token
bundles and asset policy scripts to the EUTXO model, resulting in a new EUTXOma ledger model.

We will show that the resulting EUTXOma model is strictly more expressive than both EUTXO
and UTXOma by itself. In particular, the constraint-emitting state machines in [4] can not ensure
that they are initialised correctly. In EUTXOma, we are able to use non-fungible tokens to trace
threads of state machines. Extending the mechanised Agda model from [4] allows us to then prove
inductive and temporal properties of state machines by induction over their traces, covering a wide
variety of state machine correctness properties.

Moreover, the more expressive scripting functionality and state threading of EUTXO enables us
to define more sophisticated asset policies than in UTXOma. Additionally, we argue that the com-
bined system allows for sophisticated access-control schemes by representing roles and capabilities
in the form of user-defined tokens.

In summary, this paper makes the following contributions:

– We introduce the multi-asset EUTXOma ledger model (§ 2).
– We outline a range of application scenarios that are arguably better supported by the new

model, and also applications that plain UTXOma does not support at all (§ 3).
– We formally prove a transfer result for inductive and temporal properties from constraint emit-

ting machines to the EUTXOma ledger, an important property that we were not able to establish
for plain EUTXO (§ 4).

We discuss related work in § 5. Due to space constraints, the formal ledger rules for EUTXOma are
in Appendix A. A mechanised version of the ledger rules and the various formal results from § 4 is
available as Agda source code.3

On top of the conceptual and theoretical contributions made in this paper, we would like to
emphasise that the proposed system is highly practical. In fact, EUTXOma underlies our imple-
mentation of Plutus Platform, the smart contract system of the Cardano blockchain.4

3 https://github.com/omelkonian/formal-utxo/tree/2d32
4 https://github.com/input-output-hk/plutus

https://github.com/omelkonian/formal-utxo/tree/2d32
https://github.com/input-output-hk/plutus
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2 Extending Extended UTXO

Before discussing applications and the formal model of EUTXOma, we briefly summarise the struc-
ture of EUTXO, and then informally introduce the multi-asset extension that is the subject of this
paper. Finally, we will discuss a shortcoming in the state machine mapping of EUTXO as introduced
in [4] and illustrate how the multi-asset extension fixes that shortcoming.

2.1 The starting point: Extended UTXO

In Bitcoin’s UTXO ledger model, the ledger is formed by a list of transactions grouped into blocks.
As the block structure is secondary to the discussion in this paper, we will disregard it in the
following. A transaction tx is a quadruple (I,O, r, S) comprising a set of inputs I, a list of outputs
O, a validity interval r, and a set of signatures S, where inputs and outputs denote cryptocurrency
value flowing into and out of the transaction, respectively. The sum of the inputs must be equal to
the sum of the outputs — in other words, transactions preserve value. Transactions are identified
by a collision-resistant cryptographic hash h computed from their value.

An input i ∈ I is represented as a pair (outref , ρ) of an output reference outref and a redeemer
value ρ. The output reference outref uniquely identifies an output in a preceding transaction by
way of the transaction’s hash and the output’s position in the transaction’s list of outputs.

In plain UTXO, an output o ∈ O is a pair of a validator script ν and cryptocurrency value
value. In the Extended UTXO model (EUTXO) [4], outputs become triples (ν, value, δ), where the
added datum δ enables passing additional information to the validator.

The purpose of the validator is to assess whether an input i of a successive transaction trying
to spend (i.e., consume) an output o should be admitted. To this end, we execute the validator
script to check whether ν(ρ, δ, σ) = true holds. Here σ comprises additional information about the
validation context of the transaction. In the plain UTXO model that contextual information is fairly
limited; it mainly consists of the validated transaction’s hash, the signatures S, and information
about the length of the blockchain. In the EUTXO model, we extend σ to include the entirety of
the validated transaction tx as well as all the outputs spent by the inputs of tx .

2.2 Token bundles

In UTXO and EUTXO, the value carried by an output is represented as an integral value denoting a
specific quantity of the ledger’s native cryptocurrency. As discussed in more detail in the companion
paper [3], we can generalise value to carry a two-level structure of finitely-supported functions. The
technicalities are in Appendix A; for now, we can regard them as nested finite maps to quantities
of tokens. For example, the value {Coin 7→ {Coin 7→ 3}, g 7→ {t1 7→ 1, t2 7→ 1}} contains 3 Coin
coins (there is only one (fungible) token Coin for a payment currency also called Coin), as well as
(non-fungible) tokens t1 and t2, both in asset group g. Values can be added naturally, e.g.,

{Coin 7→ {Coin 7→ 3}, g 7→ {t1 7→ 1, t2 7→ 1}}
+ {Coin 7→ {Coin 7→ 1}, g 7→ {t3 7→ 1}}
= {Coin 7→ {Coin 7→ 4}, g 7→ {t1 7→ 1, t2 7→ 1, t3 7→ 1}} .

In a bundle, such as g 7→ {t1 7→ 1, t2 7→ 1, t3 7→ 1}, we call g an asset group comprising a set of
tokens t1, t2, and t3. In the case of a fungible asset group, such as Coin, we may call it a currency.
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Holding
Collecting

(v, p, d, sigs)

Propose(v, p, d)
sigs′ = {}

Add(sig)
sigs′ = sigs ∪ sig
if sig ∈ sigsauth

Pay
if |sigs| ≥ n

Cancel
if d expired

Fig. 1: Transition diagram for the multi-signature state machine; edges labelled with input from
redeemer and transition constraints.

2.3 Forging custom tokens

To be able to introduce new quantities of new tokens on the ledger (minting) or to remove existing
tokens (burning), we add a forge field to each transaction. The use of the forge field needs to be
tightly controlled, so that the minting and burning of tokens is guaranteed to proceed according to
the token’s forging policy. We implement forging policies by means of scripts that are much like the
validator scripts used to lock outputs in EUTXO.

Overall, a transaction in EUTXOma is thus a sextuple (I,O, r, forge, fpss, S), where forge, just
like value in an output, is a token bundle and fpss is a set of forging policy scripts. Unlike the value
attached to transaction outputs, forge is allowed to be negative. Positive values represent minted
tokens and negative values represent burned tokens. In either case, any asset group φ that occurs in
forge (i.e., forge = {. . . , φ 7→ toks, . . .}) must also have its forging policy script in the transaction’s
fpss field. Each script π in fpss is executed to check whether π(σ) = true, that is whether the
transaction, including its forge field, is admissible.5

2.4 Constraint emitting machines

In the EUTXO paper [4], we explained how we can map constraint emitting machines (CEMs) —a
variation on Mealy machines— onto an EUTXO ledger. A CEM consists of its type of states S and
inputs I, predicates initial, final : S → B indicating which states are initial and final, respectively,
and a valid set of transitions, given as a function step : S → I → Maybe (S × TxConstraints)6 from
source state and input symbol to target state and constraints.

A sequence of CEM state transitions, each of the form s
i−−→ (s′, tx≡), is mapped to a se-

quence of transactions, where each machine state s is represented by one transaction tx s. Each such
transaction contains a state machine output os whose validator νs implements the CEM transition
relation and whose datum δs encodes the CEM state s.

The transition tx s′ , representing the successor state, spends os with an input that provides the
CEM input i as its redeemer ρi. Finally, the constraints tx≡ generated by the state transition need
to be met by the successor transition tx s′ . (We will define the correspondence precisely in § 4.)

5 In fact we have a slightly different σ here, which we elaborate on in Appendix A.
6 The result may be Nothing, in case no valid transitions exist from a given state/input.
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A simple example for such a state machine is an on-chain n–of–m multi-signature contract.
Specifically, we have a given amount valuemsc of some cryptocurrency and we require the approval
of at least n out of an a priori fixed set of m ≥ n owners to spend valuemsc. With plain UTXO (e.g.,
on Bitcoin), a multi-signature scheme requires out-of-band (off-chain) communication to collect all
n signatures to spend valuemsc. On Ethereum, and also in the EUTXO model, we can collect the
signatures on-chain, without any out-of-band communication. To do so, we use a state machine
operating according to the transition diagram in Figure 1, where we assume that the threshold n
and authorised signatures sigsauth with |sigsauth| = m are baked into the contract code.

In the multi-signature state machine’s implementation in the EUTXO model, we use a validator
function νmsc accompanied by the datum δmsc to lock valuemsc. The datum δmsc stores the machine
state, which is of the form Holding when only holding the locked value or Collecting(value, κ, d, sigs)
when collecting signatures sigs for a payment of value to κ by the deadline d. The initial output
for the contract is (νmsc, valuemsc,Holding).

The validator νmsc implements the state transition diagram from Figure 1 by using the redeemer
of the spending input to determine the transition that needs to be taken. That redeemer (state
machine input) can take four forms: (1) Propose(value, κ, d) to propose a payment of value to κ by
the deadline d, (2) Add(sig) to add a signature sig to a payment, (3) Cancel to cancel a proposal
after its deadline expired, and (4) Pay to make a payment once all required signatures have been
collected. It then validates that the spending transaction tx is a valid representation of the newly
reached machine state. This implies that tx needs to keep valuemsc locked by νmsc and that the
state in the datum δ′msc needs to be the successor state of δmsc according to the transition diagram.

While the state machine in Figure 1 is fine, its mapping to EUTXO transactions comes with a
subtle caveat: what if, for a 2–of–3 contract, somebody posts a transition txbad corresponding to the
state Collecting(value, κ, d, {sig1, sig2}) onto the chain without going through any of the previous
states, including without starting in Holding? Given that Pay merely checks |sigs| ≥ 2, the payment
would be processed when requested on txbad, even if {sig1, sig2} are invalid signatures. We could
have never added sig1 or sig2 by way of Add(sig) as its state transition checks signature validity,
but by initialising the state machine in an intermediate state s with initial(s) = false, we were able
to circumvent that check.

In the plain EUTXO model, there is no simple way for the validator implementing a state
machine to assert that the state it is operating on arose out of a succession of predecessor states
rooted in an initial state. As a consequence of this limitation, the formal result presented in the
EUTXO paper [4] is not as strong as one might hope. More precisely, this previous work did establish
soundness and completeness for a weak bisimulation between CEMs and transactions on a EUTXO
ledger. However, it did fall short in that it did not show that an inductive property met by the
states of a CEM may also be asserted for the corresponding states on the ledger. The reason for
this omission is precisely the problem we just discussed: for a ledger-representation of a CEM state,
we can never be sure that it arose out of a transaction sequence rooted in an initial CEM state.

2.5 Token provenance

In this presented work, we solve this problem. We will show that non-fungible tokens can be used
to identify a unique trace of transactions through an EUTXOma ledger that corresponds to all
the states of the corresponding CEM. Moreover, we introduce a notion of token provenance that
enables us to identify the first CEM state in such a trace and to ensure that it is a state accepted by
initial : S→ B. Together, these allow a state machine validator to ensure that a current CEM state
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indeed arose out of a trace of transactions rooted in a transaction corresponding to an initial CEM
state merely by checking that the non-fungible token associated with this state machine instance is
contained in the value of the state machine output that it locks — this would be valuemsc for the
multi-signature contract we used as an example earlier.

3 Applications

The functionality and applications discussed in the companion paper [3] on UTXOma are all still
possible in the extended EUTXOma model discussed here. In fact, some of the applications can
even be realised more easily by using the added EUTXO functionality, for example by using state
machine to control behaviour of a forging policy over time. On top of that, we can realise new
applications and move some of the functionality that needed to be implemented by an off-chain
trusted party in UTXOma into on-chain script code in EUTXOma.

3.1 State thread tokens

As discussed in § 2, many interesting smart contracts can be implemented by way of state machines.
However, without custom tokens, the implementation of state machines on an EUTXO ledger suffers
from two problems:

– Multiple instances of a single state machine (using the same validator code) generate state ma-
chine outputs that look alike. Hence, for a given output locked by the state machine’s validator,
we cannot tell whether it belongs to one or another run of that state machine.

– The issue raised in §§ 2.5: a validator cannot tell whether the state machine was started in one
of its initial states or whether somebody generated a state machine that is in the middle of its
execution out of nothing.

We can work around the first problem by requiring all transactions of a particular state machine
instance to be signed by a particular key and checking that as part of state machine execution. This
is awkward, as it requires off-chain communication of the key for a multi-party state machine. In
any case, these two problems open contracts up to abuse if they are not carefully implemented.

We can solve both of these problems with the help of a unique, non-fungible token, called a state
thread token, which is minted in an initial CEM state. From the initial state on, it uniquely identifies
the transaction sequence implementing the progression of one specific instance of the token’s state
machine. The state thread token is passed from one transition to the next by way of the state
machine output of each transaction, where the presence of the state thread token is asserted by the
state machine validator. More precisely, assuming a validator νs implementing the state machine
and a matching forging policy φs, the state thread token of the φs policy is used as follows:

– The forging policy φs checks that

• the transaction mints a unique, non-fungible token toks and
• the transaction’s state machine output is locked by the state machine validator νs and

contains an admissible initial state of the state machine in its datum field.

– The state machine validator νs, in turn, asserts that

• the standard state machine constraints hold,
• the value locked by νs contains the state thread token toks, and
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• if the spending transaction represents a final state, it burns toks. (We ignore burning in the
formalisation in § 4. It is for cleaning up and not relevant for correctness.)

This solves both problems. The uniqueness of the non-fungible token ensures that there is a
single path that represents the progression of the state machine. Moreover, as the token can only
be minted in an initial state, it is guaranteed that the state machine must indeed have begun in
an initial state. In § 4 we formalise this approach and we show that it is sufficient to give us the
properties that we want for state machines.

3.2 Tokenised roles and contracts

Custom tokens are convenient to control ownership and access to smart contracts. In particular, we
can turn roles in a contract into tokens by forging a set of non-fungible tokens, one for each role
in the contract. In order to take an action (for example, make a specific state transition in a state
machine) as that role, a user must present the corresponding role token.

For example, in a typical financial futures contract we have two roles: the buyer (long), and the
seller (short). In a tokenised future contract, we forge tokens which provide the right to act as the
long or short position; i.e., in order to settle the future and take delivery of the underlying asset,
an agent needs to provide the long token as part of that transaction.

Trading role tokens. Tokenised roles are themselves resources on the ledger, and as such are trade-
able and cannot be split or double spent. This tradeability is useful in practice. For example, it is
fairly typical to trade in futures contracts, buying or selling the right to act as the long or short
position in the trade. With tokenised roles, this simply amounts to trading the corresponding role
token.

The alternative approach is to identify roles with public keys, where users authenticate as a
role by signing the transaction with the corresponding key. However, this makes trading roles much
more cumbersome. An association between roles and keys could be stored in the contract datum,
but this requires interacting with the contract to change the association, instead of simply trading
a token. Moreover, when using public keys instead of role tokens, we cannot easily implement more
advanced use cases that require treating the role as a resource, such as the derivatives discussed
below.

Furthermore, the lightweight nature of our tokens is key here. To ensure that roles for all
instances of all contracts are distinct, every instance requires a unique asset group with its own
forging policy. If we had a global register with all asset groups and token names, adding a new asset
group and token for every set of role tokens we create would add significant overhead.

Derivatives and securitisation. Since tokenised roles are just tokens, they are themselves assets that
can be managed by smart contracts. This enables a number of derivative (higher-order) financial
contracts to be written in a generic way, without requiring a hard-coded list of tokens as the
underlying assets.

For example, consider interest, a contract from which payments can be extracted at regular
intervals, based on some interest rate. We can tokenise this, by issuing a token for the creditor role
that represents the claim to those payments, such that whoever presents the creditor token when a
payment is due gets to collect the payment.

If we have several instances of interest (perhaps based on different interest rates), we can lock
their creditor tokens in a new contract that bundles the cash flows of all the underlying contracts.
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The payments of this new contract are the sum of the payments of the interest contracts that it
collects. The tokens of the interest contracts cannot be traded separately as long as they are locked
by the new contract.

This kind of bundling of cash flows is called securitisation. Securitisation is commonly used to
even out variations in the payment streams of the underlying contracts, and to distribute their
default risk across different risk groups (tranches). Derivative contracts, including the example
above, make it possible to package and trade financial risks, ultimately resulting in lower expenditure
and higher liquidity for all market participants. Our system makes the cost of creating derivatives
very low, indeed no higher than making a contract that operates on any other asset.

3.3 Fairness

Tokens can be used to ensure that all participants in some agreement have been involved. For
example, consider a typical ICO setup in which a number of participants pay for the right to buy
the token during an initial issuance phase. A naive implementation is as follows:

– Contributors lock their contributions with a validator ν and a datum δ, where δ contains their
public key and ν requires that an appropriate part of the forged tranche be sent to the public
key address corresponding to δ.

– The forging policy φ requires that the sum of the inputs exceeds a pre-determined threshold T ,
and allows forging of n of the token, which must be allocated to the input payers in proportion
to their contribution.

Unfortunately, this is not fair, in that participants can be omitted by the party who actually
creates the forging transaction, as long as the other participants between them reach the threshold.

We can fix this by issuing (fungible) participation tokens, representing the right to participate
in the ICO. First, we forge l participation tokens, and then we distribute them to the participants
(in return for whatever form of payment we require). Finally, in order to issue the main tranche of
tokens, we require (in addition to the previous conditions) that some appropriate fraction of the
issued participation tokens are spent in that transaction. That means we cannot omit (too many
of) the holders of the participation tokens — and the forging policy ensures that all participants
are compensated appropriately. As a bonus, this makes the right to participate in the ICO itself
tradeable as a tokenised role. In other words, participation tokens make roles into first-class assets.

A similar scheme is being used in the Hydra head protocol [5], which implements a layer-
2 scalability solution. Hydra heads enable groups of participants to advance an a priori locked
portion of the mainchain UTXO set in a fast off-chain protocol with fast settlement in a manner
that provides the same level of security as the mainchain. The mainchain portion of the protocol,
which is based on EUTXOma, uses custom tokens to ensure that it is impossible for a subgroup of
the participants to collude to exclude one or more other participants.

3.4 Algorithmic stablecoins

In [3], we described how to implement a simple, centralised stablecoin in the UTXOma. However,
more sophisticated stablecoin designs exist, such as the Dai of MakerDAO [8].

Stablecoins where more of the critical functionality is validated on-chain can be realised within
the EUTXOma model. For example, we can use a state machine that acts as a market maker for a
stablecoin by forging stablecoins in exchange for other assets. Mechanisms to audit updates to the
current market price or to suspend trading, if the fund’s liabilities become too great, can also be
implemented programmatically on-chain.
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4 Meta-theoretical Properties of EUTXOma

In [4], we characterised the expressiveness of EUTXO ledgers by showing that we can encode a
class of state machines — Constraint Emitting Machines (CEMs) — into the ledger via a series of
transactions. Formally, we showed that there is a weak bisimulation between CEM transitions and
their encoded transitions in the ledger.

However, as we have seen from the earlier examples in §§ 2.5, this result is not sufficient to allow
us to reason about the properties of the state machine. Even if we know that each step individually
is valid, there may be some properties that are only guaranteed to hold if we started from a proper
initial state. Specifically, we will not be able to establish any inductive or temporal property, unless
we cover the base case corresponding to initial states. Since our earlier model did not prevent us
from starting the ledger in an arbitrary, non-valid state, such properties could not be carried over
from the state machines to the ledger.

In this section we extend our formalisation to map CEMs into threaded ledgers. By formalising
some of the properties of EUTXOma, we can guarantee that a ledger was started from a valid initial
state, and thus to carry over inductive and temporal properties from state machines. All the results
in this section have been mechanised in Agda, extending the formalisation from [4].

4.1 Token provenance

Given a token in a EUTXOma ledger, we can ask “where did this token come from?” Since tokens
are always created in specific forging operations, we can always trace them back through their
transaction graph to their origin.

We call such a path through the transaction graph a trace, and define the provenance of an asset
at some particular output to be a trace leading from the current transaction to an origin which
forges a value containing the traced tokens.

In the case of fungible tokens, there may be multiple possible traces: since such tokens are
interchangeable, if two tokens of some asset are forged separately, and then later mingled in the
same output, then we cannot say which one came from which forging.

Let � = (p, a) denote a particular Asset a within a Policy p, and v� = v(p)(a) the quantity of
� tokens present in value v. Trace(l,�, n) is the type of sequences of transactions t0 . . . ti, ti+1 . . .
drawn from ledger l, such that:

– the origin transaction t0 forges at least n quantity of � tokens: t0.forge� ≥ n
– every pair (ti, ti+1) has an input/output connection in the ledger that transfers at least n

quantity of � tokens: ∃o ∈ ti+1.inputs.outputRef .(ti.outputs[o.index ].value� ≥ n)

The type Provenance(l,�, n) is then defined as a set of traces . . . T race(l,�, ni) . . . , such that
∑
ni ≥

n.
To construct an output’s provenance, with respect to a particular policy and asset, we aggregate

all possible traces containing a token of this asset from the transaction’s inputs as well as from the
value that is currently being forged. Thus, our tracing procedure will construct a sound over-
approximation of the actual provenance.

o ∈ {t.outputs | t ∈ l}
provenance(l, o,�) : Provenance(l,�, o.value�)

Provenance



10 Chakravarty et al.

4.2 Forging policies are enforced

One particular meta-theoretical property we want to check is that each token is created correctly:
there is an originating transaction which forges it and is checked against the currency’s forging
policy.

Proposition 1 (Non-empty Provenance). Given any token-carrying output of a valid ledger,
its computed provenance will be inhabited by at least one trace.

o ∈ {t.outputs | t ∈ l} o.value� > 0

|provenance(l, o,�)| > 0
Provenance+

However, this is not enough to establish what we want: due to fungibility, we could identify a single
origin as the provenance for two tokens, even if the origin only forges a single token!

To remedy this, we complement (non-empty) token provenance with a formal proof of global
preservation; a generalisation of the local validity condition of value preservation from Rule 4 in
§ A.

Proposition 2 (Global Preservation). Given a valid ledger l:∑
t∈l

t.forge =
∑

o∈unspentOutputs(l)

o.value

The combination of non-empty token provenance and global preservation assures us that each
token is created correctly and there is globally no more currency than is forged (i.e., there is no
double spending).

To prove these properties we require transactions to be unique throughout the ledger, which is
not implied by the validity rules of Figure 5 in § A. In practice though, one could derive uniqueness
from any ledger that does not have more than one transaction with no inputs, since a transaction
would always have to consume some previously unspent output to pay its fees. For our purposes,
it suffices to assume there is always a single genesis transaction, i.e., a unique transaction without
any inputs:

|{t | t ∈ l , t.inputs = ∅}| = 1
Genesis

Then, we can inductively derive the uniqueness of transactions and, as a corollary, that the unspent
outputs are also unique.

4.3 Provenance for non-fungible tokens

However, our approach to threading crucially relies on the idea that a non-fungible token can pick
out a unique path through the transaction graph.

First, we define a token � to be non-fungible whenever it has been forged at most once across
all transactions of an existing valid ledger l.7 Then, we can prove that non-fungible tokens have a
singular provenance; they really do pick out a unique trace through the transaction graph.

7 This really is a property of a particular ledger: a “non-fungible” token can become fungible in a longer
ledger if other tokens of its asset are forged. Whether or not this is possible will depend on external
reasoning about the forging policy.
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Proposition 3 (Provenance for Non-fungible Tokens). Given a valid ledger l and an unspent
output carrying a non-fungible token �:

o ∈ {t.outputs | t ∈ l} o.value� > 0
∑

t∈l t.forge� ≤ 1

|provenance(l, o,�)| = 1
NF-Provenance

4.4 Threaded state machines

Armed with the provenance mechanism just described, we are now ready to extend the previously
established bisimulation between CEMs and state machines in ledgers, so that it relates CEMs with
support for initial states to threaded state machines in ledgers. That is, in addition to creating an
appropriate validator as in [4], we also create a forging policy that forges a unique thread token
which is then required for the machine to progress (and is destroyed when it terminates). Crucially,
the forging policy also checks that the machine is starting in an initial state.

For the sake of brevity, we refrain from repeating the entirety of the CEM model definitions
from [4]. Instead, we focus only on the relevant modifications and refer the reader to the mechanised
model for more details.

First, we omit the notion of final states altogether, i.e., there is no final predicate in the definition
of a CEM.8 We follow Robin Milner who observed, “What matters about a sequence of actions
is not whether it drives the automaton into an accepting state but whether the automaton is
able to perform the sequence interactively.” [10] Formally, this corresponds to prefix closure: if
an automaton accepts a string s then it accepts any initial part of s (Definition 2.6 [10]). Our
state machines are not classical state machines which accept or reject a string — rather they are
interactive processes which respond to user input.

On the other hand, we now include the notion of initial state in the predicate function initial :
S → B, which characterises the states in which a machine can start from. This enables us to
ensure that multiple copies of the machine with the same thread token cannot run at once and the
machine cannot be started in an intermediate state. State machines whose execution must start
from an initial state are also referred to as rooted state transition systems [7].

To enforce non-fungibility of the forged token, we require that the forging transaction spends a
specific output, fixed for a particular CEM instance and supplied along with its definition as a field
origin. Therefore, since no output can be spent twice, we guarantee that the token cannot be forged
again in the future.

The CEM’s forging policy checks that we only forge a single thread token, spend the supplied
origin, and that the state propagated in the outputs is initial:

policyC(txInfo, c) =


true if txInfo.forge� = 1

and origin ∈ txInfo.outputRefs
and initial(txInfo.outputs�)

false otherwise

where � = {validator#C 7→ {policy#C 7→ 1}} is the thread token and txInfo.outputs� looks up the
output which carries the newly-forged thread token and is locked by the same machine’s validator,
returning the datum decoded as a value of the state type S.

8 Note that this also simplifies the bisimulation propositions proven in [4], since we no longer need to
consider the special case of final states. Other than that, the statements stay exactly the same.
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We extend the previous definition of a CEM’s validator (displayed in gray) to also check that
the thread token is attached to the source state s and propagated to the target state s′:

validatorC(s, i, txInfo) =


true if s

i−−→ (s′, tx≡)itx≡

and satisfies(txInfo, tx≡)
and checkOutputs(s′, txInfo)
and propagates(txInfo,�, s, s′)

false otherwise

This is sufficient to let us prove a key result: given a threaded ledger state (i.e., one that includes
an appropriate thread token), that state must have evolved from a valid initial state. Since we know
that the thread token must have a singular provenance, we know that there is a unique ledger trace
that begins by forging that token — which is guaranteed to be an initial CEM state.

Proposition 4 (Initiality). Given a valid ledger l and an unspent output carrying the thread token
�, we can always trace it back to a single origin, which forges the token and abides by the forging
policy:

o ∈ {t.outputs | t ∈ l} o.value� > 0

∃tr. provenance(l, o,�) = {tr} ∧ policyC(mkPolicyContext(tr0, validator#C , l
tr0)) = true

Initiality

where tr0 denotes the origin of trace tr, and lt is the prefix of the ledger up to transaction t. The
proof essentially relies on the fact that the thread token is non-fungible, as its forging requires
spending a unique output. By NF-Provenance, we then get the unique trace back to a valid
forging transaction, which is validated against the machine’s forging policy.

4.5 Property preservation

Establishing correct initialisation is the final piece we need to be able to show that properties of
abstract CEMs carry over to their ledger equivalents. It is no longer possible to reach any state
that cannot be reached in the abstract state machine, and so any properties that hold over traces
of the state machine also hold over traces of the ledger.

Intuitively, looking at the ledger trace we immediately get from Initiality, we can discern
an underlying CEM trace that throws away all irrelevant ledger information and only keeps the
corresponding CEM steps. After having defined the proper notions of property preservation for CEM
traces, we will be able to transfer those for on-chain traces by virtue of this extraction procedure.

A simple example of a property of a machine is an invariant. We consider predicates on states
of the machine that we call state-predicates.

Definition 1. A state-predicate P is an invariant if it holds for all reachable states of the machine.

i.e., if it holds for the initial state, and for any s, i, s′ and tx≡ such that s
i−−→ (s′, tx≡), if it holds

for s then it holds for s′.

Traces of state machine execution. We have traced the path of a token through the ledger. We
can also trace the execution of a state machine. We consider rooted traces that start in the initial
state, and refer to them as just traces. A trace records the history of the states of the machine over
time and also the inputs that drive the machine from state to state.
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Definition 2. A trace is an inductively defined relation on states:

initial s = true
s ∗ s

root
s ∗ s′ s′

i−−→ (s′′, tx≡)

s ∗ s′′
snoc

This gives us a convenient notion to reason about temporal properties of the machine, such as those
which hold at all times, at some time, and properties that hold until another one does. In this paper
we restrict our attention to properties that always hold.

Properties of execution traces. Consider a predicate P on a single step of execution. We call
this a step-predicate. It can refer to the incoming state s, the input i, the outgoing state s′ and the
constraints tx≡. A particularly important lifting of predicates on steps to predicates on traces is
the transformer that ensures the predicate holds for every step in the trace.

Definition 3. Given a step-predicate P and a trace xs, the All predicate transformer is defined as:

p : initial s = true

AllP (root p)
root

AllP xs x : s′
i−−→ (s′′, tx≡) P s i s′ tx≡

AllP (snoc xs x)
snoc

A predicate transformer lifting state-predicates to a predicate that holds everywhere in a trace can
be defined as a special case: AllS P = All (λs i s′ tx≡. P s× P s′).

We are not just interested in properties of CEM traces in isolation, but more importantly we
are interested in whether these properties hold when a state machine is compiled to a contract and
executed on the chain.

We observe that the on-chain execution traces precisely follow the progress of the thread token.
We use the same notion of token provenance to characterise on-chain execution traces. To facilitate
reasoning about these traces, we can extract the corresponding state machine execution traces and
reason about those. This allows us to confine our reasoning to the simpler setting of state machines.

Proposition 5 (Extraction). Given a valid ledger l and a singular provenance of the (non-
fungible) thread token �, we can extract a rooted state machine trace.

provenance(l, o,�) = {tr}
∃s s′. s ∗ s′ Extraction

Proof. It is straightforward to show this holds, as a corollary of Initiality. For the base case,
knowing that the origin of the trace abides by the forging policy ensures that it forges the thread
token and outputs an initial state (root). In the inductive step, knowing that the validator runs
successfully guarantees that there is a corresponding CEM step (snoc).

Corollary 1. Any predicate that always holds for a CEM trace also holds for the one extracted
from the on-chain trace.

Example 1. Consider a CEM representing a simple counter that counts up from zero:

(Z, {inc}, step, init) where step i inc = just (i+ 1); init 0 = true

A simple property that we want to hold is that the state of the counter is never negative.
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Property 1. The counter state c is non-negative, i.e., c ≥ 0.

We can show that this holds for all reachable states, i.e., it is an invariant.

Lemma 1. The counter state is non-negative in states reachable from the initial state.

1. ∀c. init c→ c ≥ 0

2. ∀c c′. c i−−→ (c′, tx≡)→ c ≥ 0→ c′ ≥ 0

Proposition 6. In all reachable states of the counter state machine and all ledger states the counter
is non-negative.

1. ∀(xs : c ∗ c′).AllS (≥ 0)xs
2. ∀l o tr. provenance(l, o,�) = {tr} → ∃c c′ (xs : c ∗ c′).AllS (≥ 0)xs

Proof. (1) follows from Lemma 1. (2) follows from (1) and Corollary 1.

Example 2. We return to the n–of–m multi-signature contract of § 2. We pass as parameters
to the machine a threshold number n of signatures required and a list of m owner public keys
signatories. The states of the machine are given by {Holding,Collecting} and the inputs are given
by {Pay,Cancel,Add,Propose}. The only initial state is Holding and we omit the definition of step
which can be read off from the picture in Figure 1.

First and foremost, the previous limitation of starting in non-initial states has now been over-
come, as proven for all state machines in Proposition 5. Specifically, this holds at any output in
the ledger carrying the Collecting state, therefore it is no longer possible to circumvent the checks
performed by the Add input.

Property 2. It is only possible to cancel after the deadline.

We define a predicate on inputs and constraints for a step. If the input is Cancel then the constraints
must determine that the transaction can appear on the chain only after the deadline. If the input
is not Cancel then the predicate is trivially satisfied.

Q(s, i, , tx≡) =

{
false if i = Cancel and s = Propose( , , d) and tx≡.range 6= d . . .+∞
true otherwise

Note that we could extend Q to include cases for correctness properties of other inputs such as
ensuring that only valid signatures are added and that payments are sent to the correct recipient.

Lemma 2. Q holds everywhere in any trace. i.e. ∀s s′ (xs : s ∗ s′).AllQxs.

Proof. By induction on the trace xs.

This only tells us that all is well at the state machine level. We also need to know that our constraints
are not ignored when making the contract.

Lemma 3. For any validator generated from a state machine, if the validator returns true then all
constraints emitted by the state machine are satisfied.

Having this property for all state machines allows us to confine a high proportion of our reasoning
to the state machine level for specific machines.

Proposition 7. For any trace, all cancellations occur after the deadline.

Proof. Follows from Lemma 2 and Lemma 3.
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5 Related work

We discuss other efforts to use state machines to model smart contracts in our previous paper [4]
and we compare our approach to a multi-asset ledger with other systems (including Waves [15],
Stellar [13], and Zilliqa [11]) in the companion paper [3]. Here we focus on other approaches that
reason formally about the properties of such contracts as state machines, which is the essence of
this paper’s main contribution.

We do not know of any other approaches that use tokens as state threads.

Scilla. Scilla [12] is a intermediate-level language for writing smart contracts as state machines.
The Scilla authors have used Coq to reason about contracts written in Scilla, proving a variety of
temporal properties such as safety, liveness, and others; hence, their goals are similar to ours. Since
our meta-theory enjoys property preservation over any trace predicate, we can also formally prove
these temporal properties.

However, we are targeting a very different ledger model. This means that we need to do additional
work: the major contribution of this paper is using tokens to provide state machine instances
with an “identity”, which comes for free on Ethereum. Another Ethereum feature that widens the
gap between our approaches is support for asynchronous message passing, which renders Scilla
unsuitable as a source language for a UTXO-based ledger, and explains the different choice of
communicating automata [11] as the backbone of its model. Nonetheless, it would be interesting to
develop a Scilla-like language that was suitable for our ledger model.

BitML. The Bitcoin Modelling Language (BitML) [2] allows the definition of smart contracts run-
ning on Bitcoin by means of a restricted class of state machines. The BitML compilation process
has been proven to be computationally sound (although this proof has not been mechanised), which
allows trace-based properties about the BitML contract to be transferred to the implementation, as
in our system. This proof is used, for example, in [1] to prove and transfer Linear Temporal Logic
(LTL) properties of BitML contracts to their implementations. Most importantly, LTL formulas
can be automatically verified using a dedicated model checker.

Again, our work is closely related in spirit, although our ledger model is different and we use a
more expressive class of state machines. Thankfully, LTL formulas are included within the generic
trace predicates our property preservation result supports. However, we plan to investigate whether
we can integrate similar model checkers in our formalisation, to minimise the required proof effort.

VeriSolid. VeriSolid [9] synthesises Solidity smart contracts from a state machine specification, and
verifies temporal properties of the state machine using Computation Tree Logic (CTL). They use
this to prove safety, liveness, deadlock-freedom, and others. Again, CTL formulas are contained
within the trace predicates we support.

In contrast, the present work focuses on establishing a formal connection between the state ma-
chine model and the real implementation on the ledger — in particular, our proofs are mechanised.
We also target a UTXO ledger model, whereas VeriSolid targets the Ethereum ledger. Finally, our
approach is agnostic about the logic or checker used to prove the properties that we assert on state
machines and, by way of the results in this paper, transfer to an EUTXOma implementation of the
same state machine.

Acknowledgments. We thank Gabriele Keller for her comments on an earlier version of this
paper.
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A Complete formal definition of EUTXOma

A.1 Finitely-supported functions.

If K is any type and M is a monoid with identity element 0, then a function f : K →M is finitely
supported if f(k) 6= 0 for only finitely many k ∈ K. More precisely, for f : K → M we define the
support of f to be supp(f) = {k ∈ K : f(k) 6= 0} and FinSup[K,M ] = {f : K → M : |supp(f)| <
∞}.

If (M,+, 0) is a monoid then FinSup[K,M ] also becomes a monoid if we define addition point-
wise ((f + g)(k) = f(k) + g(k)), with the identity element being the zero map. Furthermore, if
M is an abelian group then FinSup[K,M ] is also an abelian group under this construction, with
(−f)(k) = −f(k). Similarly, if M is partially ordered, then so is FinSup[K,M ] with comparison
defined pointwise: f ≤ g if and only if f(k) ≤ g(k) for all k ∈ K.

It follows that if M is a (partially ordered) monoid or abelian group then so is FinSup[K,
FinSup[L,M ]] for any two sets of keys K and L. We will make use of this fact in the validation rules
presented later (see Figure 5).

Finitely-supported functions are easily implemented as finite maps, with a failed map lookup
corresponding to returning 0.

A.2 Ledger types

The formal definition of the EUTXOma model integrates token bundles and forge fields from the
plain UTXOma model [3] into the single currency EUTXO model definition, while adapting forging
policy scripts to enjoy the full expressiveness of validators in EUTXO (rather than the limited
domain-specific language of UTXOma). Figures 2 and 3 define the ledger types for EUTXOma.

A.3 Transaction validity

Finally, we provide the transaction validity rules, which among other things state how forging
policy scripts affect transaction validity. To this end, we replace the notion of an integral Quantity
for values by the token bundles discussed in §§ 2.2 and represented by values of the type Quantities.

As indicated in §§ 2.1, validator scripts get a context argument, which includes the validated
transaction as well as the outputs that it consumed, in EUTXO. For EUTXOma, we need two
different such context types. We have ValidatorContext for validators and PolicyContext for forging
policies. The difference is that in ValidatorContext we indicate the input of the validated transaction
that consumes the output locked by the executed validator, whereas for forging policies, we provide
the policy script hash. The latter makes it easy for the policy script to look up the component of
the transaction’s forging field that it is controlling.

The validity rules in Figure 5 define what it means for a transaction t to be valid for a valid
ledger l during the tick currentTick. (They make use of the auxiliary functions in Figure 4.) Of
these rules, Rules 1, 2, 3, 4, and 5 are common to the two systems (EUTXO and UTXOma) that we
are combing here; Rules 6 and 7 are similar in both systems, but we go with the more expressive
ones from EUTXO. The crucial changes are to the construction and passing of the context types
mentioned above, which appear in Rules 6 and 10. The later is the main point as it is responsible
for execution of forging policy scripts.

A ledger l is valid if either l is empty or l is of the form t :: l′ with l′ valid and t valid for l′.
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Basic types
B,N,Z the type of Booleans, natural numbers, and integers

H the type of bytestrings:
⋃∞

n=0{0, 1}
8n

g(φ1 : T1, . . . , φn : Tn) a record type with fields φ1, . . . , φn of types T1, . . . , Tn

t.φ the value of φ for t, where t has type T and φ is a field of T
Set[T ] the type of (finite) sets over T
List[T ] the type of lists over T , with [ ] as indexing and | | as length
h :: t the list with head h and tail t

Interval[A] the type of intervals over a totally-ordered set A
FinSup[K,M ] the type of finitely supported functions from a type K to a monoid M

Ledger primitives
Quantity an amount of an assets

Asset a type consisting of identifiers for individual asset classes
Tick a tick

Address an “address” in the blockchain
Data a type of structured data

DataHash the hash of a value of type Data
dataHash : Data→ DataHash computes the hash of an value of typeData

TxId the identifier of a transaction
txId : Tx→ TxId computes the identifier of a transaction

lookupTx : Ledger× TxId→ Tx retrieves the unique transaction with a given identifier
Script the (opaque) type of scripts

J K : Script→ Data× · · · × Data→ B applies a script to its arguments
scriptAddr : Script→ Address the address of a script

Defined types
Policy = Address

Signature = H

Quantities = FinSup[Policy,FinSup[Asset,Quantity]]

Output = (addr : Address, value : Quantities, datumHash : DataHash)

OutputRef = (id : TxId, index : Int)

Input = (outputRef : OutputRef,
validator : Script,
datum : Data,
redeemer : Data)

Tx = (inputs : Set[Input],
outputs : List[Output],
validityInterval : Interval[Tick],
forge : Quantities,
forgeScripts : Set[Script],
sigs : Set[Signature])

Ledger =List[Tx]

Fig. 2: Primitives and basic types for the EUTXOma model
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OutputInfo = (value : Quantities,
validatorHash : Address,
datumHash : DataHash)

InputInfo = (outputRef : OutputRef,
validatorHash : Address,
datumHash : DataHash,
redeemerHash : DataHash),
value : Quantities)

TxInfo = (inputInfo : List[InputInfo],
outputInfo : List[OutputInfo],
validityInterval : Interval[Tick],
forge : Quantities,
forgeScripts : Set[Script])
sigs : FinSet[Signature])

ValidatorContext = (TxInfo,N)
PolicyContext = (TxInfo,Policy)

mkValidatorContext : Tx× Input× Ledger→ ValidatorContext summarises a transaction for a valida-
tor script in the context of an input and
a ledger state

mkPolicyContext : Tx× Policy× Ledger→ PolicyContext summarises a transaction for a forging
policy script in the context of an cur-
rency and a ledger state

Fig. 3: The Context types for the EUTXOma model

unspentTxOutputs : Tx→ Set[OutputRef]
unspentTxOutputs(t) = {(txId(t), 1), . . . , (txId(id), |t.outputs|)}

unspentOutputs : Ledger→ Set[OutputRef]
unspentOutputs([]) = {}
unspentOutputs(t :: l) = (unspentOutputs(l) \ t.inputs) ∪ unspentTxOutputs(t)

getSpentOutput : Input× Ledger→ Output
getSpentOutput(i, l) = lookupTx(l, i.outputRef .id).outputs[i.outputRef .index ]

Fig. 4: Auxiliary functions for EUTXOma validation
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1. The current tick is within the validity interval

currentTick ∈ t.validityInterval

2. All outputs have non-negative values

For all o ∈ t.outputs, o.value ≥ 0

3. All inputs refer to unspent outputs

{i.outputRef |i ∈ t.inputs} ⊆ unspentOutputs(l).

4. Value is preserved

t.forge +
∑

i∈t.inputs

getSpentOutput(i, l) =
∑

o∈t.outputs

o.value

5. No output is double spent

If i1, i ∈ t.inputs and i1.outputRef = i.outputRef then i1 = i.

6. All inputs validate

For all i ∈ t.inputs, Ji.validatorK(i.datum, i.redeemer , toData(mkValidatorContext(t, i, l))) = true

7. Validator scripts match output addresses

For all i ∈ t.inputs, scriptAddr(i.validator) = getSpentOutput(i, l).addr

8. Datum objects match output hashes

For all i ∈ t.inputs, dataHash(i.datum) = getSpentOutput(i, l).datumHash

9. Forging
A transaction with a non-zero forge field is only valid if either:
(a) the ledger l is empty (that is, if the transaction is the initial transaction).
(b) for every key h ∈ supp(t.forge), there exists s ∈ t.forgeScripts with scriptAddr(s) = h.

10. All forging policy scripts validate

For all s ∈ t.forgeScripts, JsK(toData(mkPolicyContext(t, scriptAddr(s), l))) = true

Fig. 5: Validity of a transaction t in the EUTXOma model
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