
Tait in one big step
Thorsten Altenkirch and James Chapman

School of Computer Science, University of Nottingham
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

{txa,jmc}@cs.nott.ac.uk

Abstract

We present a Tait-style proof to show that a simple functional normaliser for a
combinatory version of System T terminates. Using a technique pioneered by Bove
and Capretta, we can implement the normaliser in total Type Theory. The main interest
in our construction is methodological, it is an alternative to the usual small-step
operational semantics on the one side and normalisation by evaluation on the other.
The present work is motivated by our longer term goal to verify implementations of
Type Theory such as Epigram.

Keywords: Normalisation,Strong Computability

1. INTRODUCTION

Traditionally, decidability of equality for typed λ-calculi is established by showing strong
normalisation for a small-step reduction relation [21, 15]. However, this is not the only way to
establish this result. To show decidability it is sufficient to construct a normalisation function which,
for any term, calculates a normal form that is unique for the term’s equivalence class. Indeed,
normalisation by evaluation (NBE) [8, 2, 3, 1, 6] uses a constructive denotational semantics to
construct a normalisation function by inverting the evaluation functional. While NBE has a number
of advantages – it is elegant and theoretically well understood – it is hard to tinker with the
normalisation function and the decision procedure, e.g. if we want to exploit symbolic equalities to
avoid having to normalise terms altogether.

In the present paper we investigate yet another alternative: we directly implement a partial
normalisation function and use a Tait-style construction to establish that the function terminates
for all typable terms. We use a very simple calculus to demonstrate the approach: a combinatory
version of System T. Our goal here is not to establish a new result but to show how Tait’s
proof can be adapted to show normalisation of big-step reduction and how to implement the
normaliser in Type Theory using the technique of Bove and Capretta [9]. Using Tait’s method
to prove normalisation isn’t new either, [16] uses a Tait style proof to show normalisation for
a more sophisticated system. The restriction to a combinatory calculus is appropriate since
more extensional equalities like full βη can be decided using a combination of a structural
equivalence and weak normalisation, using a variant of the big-step semantics presented here
as one component.

This work here is motivated by our goal to verify important aspects of the implementation of
Epigram [19, 17, 5], e.g. to show that Epigram’s Type Theory ETT (when suitably stratified) [11]
is decidable. While the current implementation of ETT uses NBE to implement weak reduction,
it is likely that we will move to a big-step reduction similar to the one presented here to be able
to optimize the equality test more easily. At the same time, we are using Epigram[18, 5] as a
metalanguage to formalise the development presented here.

2. COMBINATORY SYSTEM T

We start by introducing our calculus, using Epigram as our metalanguage. Its types are given by
a simple inductive definition using natural deduction style declarations of constants:

MSFP 2006 1



Tait in one big step

data
Ty : ?

where
N : Ty

σ : Ty τ : Ty
σ→τ : Ty

We will overload the symbol → to refer to both the object function arrow that we define here and
also the metatheoretic function arrow. Which one mean will be clear from the context. The symbol
? is Epigram’s type of types and we declare all new symbols as Epigram data or let definitions.
Terms are defined as an inductive family indexed by types;

data σ : Ty
Tmσ : ?

where
K : Tmσ→τ→σ S : Tm(σ→τ→ρ)→(σ→τ)→σ→ρ

t : Tmσ→τ u : Tmσ
t u : Tmτ 0 : TmN suc : TmN→N prec : Tm(N→σ→σ)→σ→N→σ

The conversion relation is inductively defined, we present it here as an inductively defined family
of types — however, this family should be regarded as propositional since we are not interested
in the choice of derivations.

data t, u : Tmσ

t ' u : Prop
where

cK : K x y ' x cS : Sx y z ' x z (y z)

cprec0 : prec f z 0 ' z cprecsuc : prec f z (suc n) ' f n (prec f z n) crefl : t ' t

p : t ' u
csym p : u ' t

p : t ' u q : u ' v
ctrans p q : t ' v

p : t ' v q : u ' w
ccong p q : t u ' v w

Here we use Prop just as a different name for ?. However, the intention is that inhabitants of
Prop are proof-irrelevant, i.e. have at most one inhabitant. In the case of the definition above, this
means that we will not use the choice of derivation to construct an element of a type.

3. NORMALISATION

Having defined the conversion relation we have specified the system and the goal is to show
that conversion is decidable. We are going to establish this by normalisation which has other
applications by exploiting the structure of normal forms. Our normal forms are values and partial
applications1 of combinators:

data σ : Ty
Nfσ : ?

where
nK : Nfσ→τ→σ

u : Nfσ

nK1 u : Nfτ→σ

nS : Nf(σ→τ→ρ)→(σ→τ)→σ→ρ

u : Nfσ→τ→ρ

nS1 u : Nf(σ→τ)→σ→ρ

u : Nfσ→τ→ρ u′ : Nfσ→τ

nS2 u u′ : Nfσ→ρ n0 : NfN nsuc : NfN→N

n : NfN
nsuc1 n : NfN

nprec : Nf(N→σ→σ)→σ→N→σ

u : NfN→σ→σ

nprec1 u : Nfσ→N→σ

u : NfN→σ→σ u′ : Nfσ

nprec2 u u′ : NfN→σ

Note that it is an immediate consequence of our definition that the only normal forms of type N
are the numerals.

Traditionally, normal forms are considered as a subset of terms — in our setting this is replaced
by defining p−q to be a simple embedding from normal forms to terms. It should be noted that the
normal forms as subset of terms approach breaks down for more sophisticated systems, e.g. [1].
1We use superscripts to indicate how many arguments have already been supplied.

MSFP 2006 2



Tait in one big step

let
p−q : Nfσ → Tmσ

pnKq ⇒ K
pnK1 uq ⇒ K puq
pnSq ⇒ S
pnS1 uq ⇒ S puq
pnS2 u u′q ⇒ S puq pu′q
pn0q ⇒ 0
pnsucq ⇒ suc
pnsuc1 nq ⇒ suc pnq
pnprecq ⇒ prec
pnprec1 uq ⇒ prec puq
pnprec2 u u′q ⇒ prec puqpu′q

Our goal is to define a normalisation function

let nf : Tmσ → Nfσ

which should have the following properties:

1. Normalisation takes convertible terms to identical normal forms

a ' a′

nf a = nf a′

2. Terms are convertible to their normal forms

a ' pnf aq

As a consequence we obtain that convertibility corresponds to having the same normal form:

t ' u ⇐⇒ nf t = nf u

Since the equality of normal forms is obviously decidable, we have that conversion is decidable.
We also obtain that all terms of type N are convertible to a numeral.

As a first approximation we write nf ′ and its helper function napp′ to apply normal functions to
normal arguments as general recursive functions. The function napp′ uses general recursion, we
will show below that it is terminating for all well typed terms — note that the Epigram datatype
only contains well typed terms. This seems to be a natural approach: we first implement a
recursive function and then show that it is total. We also note that nf ′’s type already shows that
normalisation is type-preserving, i.e. that a form of subject reduction holds.

let nf ′ : Tmσ → Nfσ

nf ′ K ⇒ nK
nf ′ S ⇒ nS
nf ′ 0 ⇒ n0
nf ′ suc ⇒ nsuc
nf ′ prec ⇒ nprec
nf ′ (t u) ⇒ napp′ (nf ′ t) (nf ′ u)

MSFP 2006 3



Tait in one big step

let napp′ : Nfσ→τ → Nfσ → Nfτ

napp′ nK x ⇒ nK1 x
napp′ (nK1 x) y ⇒ x
napp′ nS x ⇒ nS1 x
napp′ (nS1 x) y ⇒ nS2 x y
napp′ (nS2 x y) z ⇒ napp′ (napp′ x z) (napp′ y z)
napp′ nsuc n ⇒ nsuc1 n
napp′ nprec f ⇒ nprec1 f
napp′ (nprec1 f) z ⇒ nprec2 f z
napp′ (nprec2 f z) n0 ⇒ z
napp′ (nprec2 f z) (nsuc1 n) ⇒ napp′ (napp′ f n) (napp′ (nprec2 f z) n)

4. BIG-STEP REDUCTION

We cannot reason about the general recursive functions nf ′ and napp′ directly within Type
Theory. Instead we are going to specify the graph of these functions as an inductively defined
relations a binary relation − ⇓ − corresponding to nf and a ternary relation − $ − ⇓ −
coresponding to napp. These relations are precisely the big-step reduction relations. We will use
the relations to define termination predicates and we are able to use a variant of [9] to implement
terminating versions of the functions.

data t : Tmσ n : Nfσ
t ⇓ n : Prop

where

rK : K ⇓ nK rS : S ⇓ nS
p : t ⇓ t′ q : u ⇓ u′ r : t′ $ u′ ⇓ v

rapp p q r : t u ⇓ v

r0 : 0 ⇓ n0 rsuc : suc ⇓ nsuc rprec : prec ⇓ nprec

data m : Nfσ→τ n : Nfσ o : Nfτ
m $ n ⇓ o : Prop

where

rK1 : K $ x ⇓ nK1 x rK2 : nK1 x $ y ⇓ x rS1 : nS $ x ⇓ nS1 x

rS2 : nS1 x $ y ⇓ nS2 x y
p : x $ z ⇓ u q : y $ z ⇓ v r : u $ v ⇓ w

rS3 p q r : nS2 x y $ z ⇓ w

rsuc1 : nsuc $ n ⇓ nsuc1 n rprec1 : nprec $ f ⇓ nprec1 f rprec2 : nprec1 f $ z ⇓ nprec2 f z

rprec0 : nprec2 f z $ n0 ⇓ z
p : f $ n ⇓ u q : nprec2 f z $ n ⇓ v r : u $ v ⇓ w

rprecsuc p q r : nprec2 f z $ nsuc1 n ⇓ w

We obtain the termination predicates− ⇓ and− $ − ⇓ by existentially quantifying over the result:

let t : Tmσ
t ⇓ : Prop

t ⇓ ⇒ ∃n :Nfσ . t ⇓ n

let m : Nfσ→τ n : Nfσ
m $ n ⇓ : Prop

m $ n ⇓ ⇒ ∃o :Nfτ .m $ n ⇓ o

We observe that the relations are deterministic — not very surprising since they are derived from
function definitions:

Lemma 1

t ⇓ n t ⇓ n′

n = n′
f $ n ⇓ o f $ n ⇓ o′

o = o′

We have to relate the big-step semantics to our equational theory to be able to show that our
normalisation function satisfies the properties 1. and 2. stated above. Property 1 is straightforward
and just reflects that our normalisation functions only exploit valid equations:

MSFP 2006 4



Tait in one big step

Lemma 2

t ⇓ n
t ' pnq

f $ n ⇓ o
pfq pnq ' poq

Proof: By induction over the derivations of t ⇓ n and f $ n ⇓ o. 2

However, property 2., corresponding to confluence, proves more elusive. We would like to have

t ' u t ⇓ n u ⇓ o
n = o

However, any proof attempt breaks down at the transitivity rule 2. Indeed, if our system wouldn’t
be strongly normalising this property depends on the Church-Rosser property for the small-step
semantics, or an equivalent principle. To avoid this complication we anticipate that our big-step
semantics is terminating anyway and hence we only need a principle corresponding to the weak
Church-Rosser property, which is much easier to show:

Lemma 3 Assuming normalisation, i.e. ∀t :Tmσ . t ⇓ we have that

t ' u t ⇓ n u ⇓ o
n = o

Proof: By induction over the derivation of t ' u, using lemma 1 2

5. STRONG COMPUTABILITY

The essence of Tait’s proof was to strengthen strong normalisation to strong computability which
is, in particular, closed under application. We do the same for normalisation for our bigstep
semantics but, slightly misleading, stick to the historic term Strong Computability.

We first define a Strong Computability predicate on normal forms SCN by induction over types,
here we are using − $ − ⇓ − to express that a strongly computable normal form terminates for
all strongly computable arguments and produces a strongly computable result:

let t : Nfσ
SCNσ t : Prop

SCNN t ⇒ True
SCNσ→τ t ⇒ ∀u :Nfσ .SCNσ u → ∃n :Nfτ . t $ u ⇓ n ∧ SCNτ n

The case for N is so trivial because, as we remarked before, the numerals are exactly the normal
forms of type N. In case of more sophisticated inductive types, such as the type of ordinal
notations, SCN for that type has to be defined inductively.

A strongly computable term is a term which reduces to a strongly computable normal form — this
is represented in Epigram by defining the predicate SC:

let t : Tmσ
SCσ t : Prop

SCσ t ⇒ ∃n :Nfσ . t ⇓ n ∧ SCNσ n

Our main technical lemma is that all normal forms are strongly computable:

Proposition 1

∀n ::Nfσ .SCNσ n

2It is interesting to note that transitivity works for call-by-name but then the rule for congruence of application, which is
unproblematic for call-by-value, causes trouble.

MSFP 2006 5



Tait in one big step

Proof: We verify the case for a normal forms of arrow type σ→τ by induction on the normal form
n.

For each case we assume a normal form n′ that is strongly computable and we exhibit an
inhabitant of the relation n $ n′ ⇓ n′′ and show that there is a normal form n′′ that is strongly
computable.

Case for nK1 x:

rK2 and x is strongly computable by inductive hypothesis.

Case for nK:

rK1 and nK1 n is strongly computable by the previous case.

Case for nS2 x y:

We have inductive hypotheses that x and y are strongly computable. It follows that the result of
applying each of them to n′ to produce normal forms f and a respectively are strongly computable.
It then follows that the the application of f to a to the normal form n′′ is also strong computable.
For the big-step relation we must project out the inhabitants of the relations from the strong
computability of f , a and n′′ respectively to supply as arguments to rS3.

Case for nS1 x:

rS2 and nS2 xn is strongly computable by the previous case.

Case for nS:

rS1 and nS1 n is strongly computable by the previous case.

Case for nsuc:

rsuc1 and nsuc1 n has type NfN so is strongly computable.

Case for nprec2 f z:

For this case we must do a further induction on the argument n which is a natural number.
For the n0 case: rprec0 and strong computability of z is by inductive hypothesis. For the nsuc1 n
case strong computability is as follows: f is strongly computable by inductive hypothesis, the
application of f to n to normal form so f ′ is strongly computable. nprec2 f z is strongly computable
by inductive hypothesis and the application of f ′ to nprec2 f z is therefore strongly computable. We
exhibit the inhabitant of the reduction relation as follows: The first argument to rprecsuc is from the
strong computability of f ′ the second is from the inductive hypothesis that nprec2 f z is strongly
computable and the third from the application of f ′ to the inductive hypothesis nprec2′, f z.

Case for nprec1 f :

rprec2 and nprec2 f n is strongly computable by the previous case.

Case for nprec:

rprec1 and nprec n is strongly computable by the previous case. 2

The main theorem is now an easy consequence:

Proposition 2 All terms are Strongly Computable.

∀t :Tmσ .SC t

MSFP 2006 6



Tait in one big step

Proof. by induction on t.

Cases for K, S, 0, suc and prec are immediate. Case for application (t u): By appeal to the
inductive hypotheses we know that t and u have normal forms which are strongly computable. By
the definition of SCN their application is strongly computable

Normalisation is an obvious corollary:

Corollary 1 All terms are normalising.

let norm : ∀t :Tmσ . t ⇓

6. IMPLEMENTING NORMALISATION

We have shown our main result — what remains to be done? To implement nf and napp in Type
Theory we define versions of the functions which take the termination predicates as additional
arguments. Here we follow Bove and Capretta, however, the situation is a bit more complicated
here because we have nested recursive calls. It has been suggested to use inductive-recursive
definitions here [14, 9] but an easier alternative is to use the graph of the function as we have
done here. This approach has also been suggested independently by Setzer recently [20].

We first define more general versions of the functions which also return an equation — this is
necessary to deal with nested recursion.

let t :Tmσ p : t ⇓ n
nf ′′ t p : ∃n′ :Nfσ . n′ = n

nf ′′ K rK ⇒ (nK; refl)
nf ′′ S rS ⇒ (nS; refl)
nf ′′ 0 r0 ⇒ (n0; refl)
nf ′′ suc rsuc ⇒ (nsuc; refl)
nf ′′ prec rprec ⇒ (nprec; refl)
nf ′′ (t u) (rapp p1 p2 p3) ⇒ napp′′ n1 n2 p3[coe q1 q2〉

where (n1; q1) = nf ′′ t p1
(n2; q2) = nf ′′ t p2

let n :Nfσ→τ , n′ :Nfσ p :n $ n′ ⇓ n′′

napp′′ n n′ p : ∃n′′′ :Nfτ . n′′′ = n′′

napp′′ (nK) x rK1 ⇒ (nK1 x; refl)
napp′′ (nK1 x) y rK2 ⇒ (x; refl)
napp′′ (nS) x rS1 ⇒ (nS1 x; refl)
napp′′ (nS1 x) y rS2 ⇒ (nS2 x y; refl)
napp′′ (nS2 x y) z (rS2 p1 p2 p3 n) ⇒ napp′′ n1 n2 p3[coe q1 q2〉

where (n1; q1) = napp′′ x z p1
(n2; q2) = napp′′ y z p2

napp′′ (nprec) f rprec1 ⇒ (nprec1 f ; refl)
napp′′ (nprec1 f) z rprec2 ⇒ (nprec2 f z; refl)
napp′′ (nprec2 f z) n0 rprec0 ⇒ (z; refl)
napp′′ (nprec2 f z) (nsuc1 n) (rprecsuc p1 p2 p3) ⇒ napp′′ n1 n2 p3[coe q1 q2〉

where (n1; q1) = napp′′ f n p1
(n2; q2) = napp′′ (nprec2 f z) n p2

We use the utility function

let p : m = m′ q : n = n′

coe p q : m $ n ⇓ o = m′ $ n′ ⇓ o

MSFP 2006 7



Tait in one big step

and

let s : S p : S = S′

s[p〉 : S′

as introduced in [4]. The definition of napp′′ is structurally recursive over the derivation of the
big-step relation, if we take into account that coercions are size preserving. This causes some
additional effort in the actual formalisation of the construction.

Using the normalisation theorem we can now implement terminating versions of our normalisation
function:

let nf : Tmσ → Nfσ

nf t ⇒ n
where (n; −) = nf ′′ t (norm t)

And as a consequence of our previous results we obtain:

Proposition 3 nf is a normalisation function, i.e.

a ' a′

nf a = nf a′ a ' pnf aq

We note that, computationally, the type-theoretic implementation of nf behaves the same as the
recursive implementation since we have only added propositional arguments which cannot affect
the computation. This could be made precise by using a compiler based on [10], which eliminates
arguments not relevant at run-time.

7. CONCLUSIONS AND FURTHER WORK

It may seem that the last section didn’t add much to the result, because indeed proposition 1
already established constructively that for any term there exists a normal form which is the result
of the big-step reduction. Hence using the first projection for ∃ (i.e. by the axiom of choice) we
could have obtain a normalisation function directly. However, what is the computational behaviour
of this function? As it has already been observed by Berger[7]: we obtain NBE this way — in
this case we obtain the normalisation algorithm in [13]. Hence, a potential advantage of the
construction proposed here is that we get an implementation of the naive recursive algorithm
for normalisation but in a terminating framework. We started with a partial-recursive function and
invested some work to obtain the a function with the same computational behaviour but with the
guarantuee of termination.

Comparing the technique of normalisation by reduction (NBR) presented here with NBE, which
has been applied to the same calculus in [13], we suggest that NBR has the following potential
advantages:

• NBR is first order and can be further translated into an abstract machine using standard
techniques. NBE requires a higher order meta-language, which already implements
functional abstraction.

• NBE is less precise about the actual computational behaviour, i.e. it inherits the evaluation
order (e.g. call-by-name vs call-by-value) from the meta-language. It may be useful to vary
evaluation order within the same calculus.

• It seems to be often easier to modify the recursively defined normalisation function directly
to implement optimisation than to modify the NBE semantics. An example is the admissible
equality of SK K x ' x, which can be easily added to the recursive normaliser by adding
the line

napp′ (nS2 nK nK) z ⇒ z

while the corresponding modification of the NBE semantics is less obvious.
• The separation of proof and algorithm in NBR makes it possible to use a classical

normalisation proof, using Markov’s principle.

MSFP 2006 8



Tait in one big step

• NBR together with a structural congruence could help to simplify normalisation algorithms
for sophisticated systems like λ-calculus with coproducts, for which a normalisation function
can be constructed using NBE for a sheaf-theoretic semantics [1].

Having said this, we acknowledge that NBE has a dual collection of advantages, which follows
from the fact that it exploits the meta-langauge and hence we don’t have to reimplement the
basic machinery. The fact that NBE is based on denotational semantics did help to construct
normalisation functions, e.g. in the case of coproducts, however, when looking for a better
implementation we may have to move to NBR.

We have only dealt with a combinatory calculus and haven’t addressed the intricacies of λ-
abstraction in the presence of ξ and η rules. However, we do not actually suggest that these
extensional rules, should be captured by incorporating them into the big-step relation but by
combining a big-step reduction with a structural congruence, which is structurally recursive on
types. This approach was suggested in [12] and is indeed the core of the Epigram typechecker as
discussed (but not verified) in detail in [11]. We hope that the methodology presented here will be
useful when verifying the core of the Epigram system itself.

REFERENCES

[1] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Phil Scott. Normalization by
evaluation for typed lambda calculus with coproducts. In 16th Annual IEEE Symposium
on Logic in Computer Science, pages 303–310, 2001.

[2] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruction of a
reduction free normalization proof. In David Pitt, David E. Rydeheard, and Peter Johnstone,
editors, Category Theory and Computer Science, LNCS 953, pages 182–199, 1995.

[3] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-free normalisation
for a polymorphic system. In 11th Annual IEEE Symposium on Logic in Computer Science,
pages 98–106, 1996.

[4] Thorsten Altenkirch and Conor McBride. Towards observational type theory. Manuscript,
available online, February 2006.

[5] Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent types matter.
Manuscript, available online, April 2005.

[6] Thorsten Altenkirch and Tarmo Uustalu. Normalization by evaluation for λ→2. In Functional
and Logic Programming, number 2998 in LNCS, pages 260–275, 2004.

[7] Ulrich Berger. Program extraction from normalization proofs. In M. Bezem and J.F. Groote,
editors, Typed Lambda Calculi and Applications, volume 664 of LNCS, pages 91–106.
Springer-Verlag, 1993.

[8] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for typed
λ–calculus. In R. Vemuri, editor, Proceedings of the Sixth Annual IEEE Symposium on Logic
in Computer Science, pages 203–211. IEEE Computer Science Press, Los Alamitos, 1991.

[9] Ana Bove and Venanzio Capretta. Nested general recursion and partiality in type theory. In
Richard J. Boulton and Paul B. Jackson, editors, Theorem Proving in Higher Order Logics:
14th International Conference, TPHOLs 2001, volume 2152 of Lecture Notes in Computer
Science, pages 121–135. Springer-Verlag, 2001.

[10] Edwin Brady, Conor McBride, and James McKinna. Inductive families need not store their
indices. In Stefano Berardi, Mario Coppo, and Ferrucio Damiani, editors, Types for Proofs
and Programs, Torino, 2003, volume 3085 of LNCS, pages 115–129. Springer-Verlag, 2004.

[11] James Chapman, Conor McBride, and Thorsten Altenkirch. Epigram reloaded: A standalone
typechecker for ETT. In Trends in Functional Programming 6. Intellect, 2005.

[12] Thierry Coquand. An algorithm for testing conversion in type theory. In Gérard Huet and
Gordon Plotkin, editors, Logical Frameworks. CUP, 1991.

[13] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and normalization
proofs. Mathematical Structures in Computer Science, 7(1):75–94, 1997.

[14] Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions. In
Jean-Yves Girard, editor, Typed Lambda Calculi and Applications, volume 1581 of Lecture
Notes in Computer Science, pages 129–146. Springer, April 1999.

MSFP 2006 9



Tait in one big step

[15] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1989.
[16] Paul Blain Levy. Call-by-push-value. PhD thesis, Queen Mary, University of London, 2001.
[17] Conor McBride. Epigram, 2005. http://www.e-pig.org.
[18] Conor McBride. Epigram: Practical programming with dependent types. In Varmo Vene and

Tarmo Uustalu, editors, Advanced Functional Programming 2004, volume 3622 of Lecture
Notes in Computer Science, pages 130–170. Springer-Verlag, 2005. Revised lecture notes
from the International Summer School in Tartu, Estonia.

[19] Conor McBride and James McKinna. The view from the left. Journal of Functional
Programming, 14(1), 2004.

[20] Anton Setzer. Representation of partial recursive functions by inductive-recursive and by
inductive definitions. Talk given at Conference of the Types Project, University of Nottingham,
UK, 2006.

[21] W.W. Tait. Intensional interpretations of functionals of finite type. Journal of Symbolic Logic,
32:198–212, 1967.

MSFP 2006 10


