
Machine assisted proofs in the theory of monads

Thorsten Altenkirch
University of Nottingham

UK
txa@cs.nott.ac.uk

James Chapman
Institute of Cybernetics

Estonia
james@cs.ioc.ee

Tarmo Uustalu
Institute of Cybernetics

Estonia
tarmo@cs.ioc.ee

Abstract

In this paper (and the ongoing development it describes) we formalise some aspects of the theory of
monads in Agda. In doing so we give motivation for our work, relate it to previous efforts, explain why
it pushes the theory and implementation of type theoretic theorem provers to breaking point, and suggest
some future directions.

Introduction

Our aim is to explore the design space of formalising basic category theory in proof assistants and dependently
typed programming languages. The ongoing development [4] that accompanies this paper incorporates (at
the time of writing) a partial formalisation of: categories; functors; natural transformations; two notions of
monads; two notions of adjunctions; Kleisli categories; two notions of Eilenberg-Moore categories; categories
of adjunctions; and various constructions relating them.

Basic algebraic structures can be defined as follows: first we define some data (e.g. a set and some
operations on it) which provides the basic structure; and second we define some laws which govern how the
data (e.g. an operation) behaves. An example of something which fits this pattern is a category:

First the data
Obj : Set Set of objects
Hom : Obj→ Obj→ Set Set of morphisms
id : ∀X : Obj. HomX X Identity
comp : ∀X, Y, Z : Obj. Composition

HomY Z → HomX Y → HomX Z
Then the laws
∀X, Y : Obj. ∀f : HomX Y. comp id f ≡ f Left identity
∀X, Y : Obj. ∀f : HomX Y. comp f id ≡ f Right identity
∀W, X, Y, Z : Obj. Associativity
∀f : HomY Z. ∀g : HomX Y. ∀h : HomW X.

comp f (comp g h) ≡ comp (comp f g) h

In Agda [1] we can use dependent records and propositional equations to represent these structures quite
naturally. The definition in Agda below is almost the same as the above definition except for some minor
details. The sequence of fields is explicitly represented in a record which is itself a Set (Agda’s notation for
a type). Universal quantification is written as (a : A) → _. In this definition we use implicit universal
quantification {a : A} → _ as these arguments can often be inferred. However, if later we wish to supply
them explicitly, we can, e.g. id {X}. Indeed, if we were being really pedantic above we should have provided
the relevant objects as arguments to id and comp in the laws. The last difference is that we must give field
names to the laws as we did for the data.

record Cat : Set where

field Obj : Set

Hom : Obj → Obj → Set

id : {X : Obj} → Hom X X

comp : {X Y Z : Obj} → Hom Y Z → Hom X Y → Hom X Z

lid : {X Y : Obj}{f : Hom X Y} → comp id f ≡ f

rid : {X Y : Obj}{f : Hom X Y} → comp f id ≡ f

assoc : {W X Y Z : Obj}{f : Hom Y Z}{g : Hom X Y}{h : Hom W X} →
comp f (comp g h) ≡ comp (comp f g) h

1



Compare this type of definition with Haskell where we can define the operations of a monoid and define an
instance of a monoid (e.g. natural numbers, zero and addition) but we cannot show inside the system that
this instance would obey the laws of a monoid. In Agda we can do both: we can write programs that make
use of algebraic structure and we can reason about them, and in the process make extra guarantees that
the we really have the structures that we say we do. In this paper we focus on the second aspect: reasoning
about algebraic structures. Our subject is algebraic structures themselves (those related to monads) and we
are using Agda to support our investigation, and development of these structures.

Related work and future directions

The way we have defined a category in Agda seems entirely natural to us: these structures really are
dependent records and it is natural to represent the laws as (conditional) equations in propositional equality.
There is no hope for using definitional equality as they are not definitions; they are laws which are to
be obeyed and expect proofs. Previous efforts have centred around using setoids (sets equipped with an
equivalence relation) to encode equality [8, 5, 10]. For categories, this means that a homset would be coded
as a setoid, with morphism equality as the equivalence relation of the setoid. In our opinion the main
problem with this approach is that the setoids clutter up the the development: very soon all one can see are
setoids and the category theory becomes buried; we must spend most of our effort showing that operations
respect equivalence relations instead of reasoning about category theory.

Our approach is not new; indeed, it is the most obvious. However, it has only recently become feasible
and part of the reason to pursue it is to further develop type theory and its implementations to realise
our goal: formalising category theory in type theory. Some of the ingredients were provided by McBride
and McKinna’s internalisation of pattern matching [9] first seen in the prototypic Epigram system [6] and
again in the most recent version of Agda where it became useable for larger scale developments. With
these advances we can get further than before but there are still some barriers. Firstly, our development is
extremely strenuous on the implementation. It is easy to exhaust gigabytes of RAM with relatively small
programs. Adding proof irrelevance would speed things up significantly as part of the problem is that the
machine wastes time storing, manipulating and comparing equality proofs. Secondly, whilst not necessary for
our development of monads, proof irrelevance and quotients are a vital piece of equipment, if one is to have
a more general formalisation of category theory. It is our hope that these advances (proof irrelevance and
quotients) will be provided by the the next prototype of Epigram, the theory and implementation of which
the first and second author are actively engaged in. The future version of Epigram [7] will have Observational
Equality [3] (which the second author recently implemented in the latest prototype) and hopes to fulfill this
aim: to provide the power of setoid constructions without the technical burden on the user.

Monads

We now return to the technical content of our paper: monads. In the limited space available we will present
some constructions related to monads in Agda. We define a monad in the concise Kleisli triple style as an
object map T, a morphism h, and a operation on morphisms bind. These operations are governed by three
laws. Please note that now when we refer to the field names of other records in our definitions (e.g. Obj C

below) they act as projections which take as an argument a particular record and return the contents of the
appropriate field (in this example the set of objects for the category C).

record Monad (C : Cat) : Set where

field T0 : Obj C → Obj C

h : {X : Obj C} → Hom C X (T0 X)

bind : {X Y : Obj C} → Hom C X (T0 Y) → Hom C (T0 X) (T0 Y)

lidm : {X : Obj C} → bind (h {X}) ≡ id C {T0 X}

ridm : {X Y : Obj C}{f : Hom C X (T0 Y)} → comp C (bind f) h ≡ f

assocm : {X Y Z : Obj C}{f : Hom C Y (T0 Z)}{g : Hom C X (T0 Y)} →
comp C (bind f) (bind g) ≡ bind (comp C (bind f) g)

From this concise definition we can derive that T0 is a functor, and that h and bind are natural in X and
X,Y respectively. We can also show that this definition is equivalent to the more long-winded one with
multiplication and also that every adjunction gives rise to a monad. We omit these details here for reasons
of space. Instead we define the Kleisli category for a monad as a function which takes a monad and returns
a category:

KleisliCat : {C : Cat} → Monad C → Cat

KleisliCat {C} T = record {Obj = Obj C;

Hom = l X Y → Hom C X (T0 T Y);

2



id = h T;

comp = l f g → comp C (bind T f) g;

lid = lem1 T;

rid = ridm T;

assoc = lem2 T}

We can see from this definition that to define the Kleisli category we must provide elements for each field in
the category record including the three laws. On the right hand side of the field definitions the field names
act as destructors so Obj C returns the object field of the category C. The rid law follows immediately from
the second monad law ridm. The left identity and associativity we prove as lemmas by simple equational
reasoning. First we prove lem1:

begin

comp C (bind T (h T)) f

≡〈 cong (l X → comp C X f) (lidm T) 〉
comp C (id C) f

≡〈 lid C 〉
f

�

Note that the first argument to cong tells Agda where to apply the second argument. Next we prove lem2:

begin

comp C (bind T f) (comp C (bind T g) h)

≡〈 assoc C 〉
comp C (comp C (bind T f) (bind T g)) h

≡〈 cong (l X → comp C X h) (assocm T) 〉
comp C (bind T (comp C (bind T f) g)) h

�

Conclusion

This development has already proven useful in our work on Relative Monads [2] and we are actively expanding
it. Algebraic structures such as monads are being used effectively to structure functional programs in Haskell.
In a dependently typed functional programming language should we simply use precisely the same approach
or should we make use of the extra expressivity of dependent types to more accurately capture and exploit
the algebraic structures? It is questions like this that we hope this development will support the investigation
of.

References

[1] Agda team. Agda, 2009. http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php.

[2] T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors. Submitted, 2009.

[3] T. Altenkirch, C. McBride, and W. Swierstra. Observational equality, now! In Proc. of 2007 Wksh. on
Programming Languages Meet Program Verification, PLPV 2007, pages 57–68, New York, 2007. ACM.

[4] J. Chapman. Formalisation of the theory of monads, 2009. http://www.cs.ioc.ee/~james/repos/

AssistedMonads/.

[5] P. Dybjer and V. Gaspes. Implementing a category of sets in ALF. Technical report, Chalmers
University, Gothenberg, 1994.

[6] Epigram team. Epigram, 2009. http://www.e-pig.org.

[7] Epigram team. Epigram blog, 2009. http://sneezy.cs.nott.ac.uk/epilogue.

[8] G. Huet and A. Säıbi. Constructive category theory. In C. Stirling G. Plotkin and M. Tofte, editors,
Proof, Language, and Interaction: Essays in Honour of Robin Milner, pages 239–275. MIT Press, 2000.

[9] C. McBride and J. McKinna. The view from the left. Journal of Functional Programming, 14(1):69–111,
2004.

[10] O. Wilander. An E-bicategory of E-categories exemplifying a type-theoretic approach to bicategories.
Technical report, University of Uppsala, 2005.

3


