
The Gentle Art of Levitation

James Chapman
Institute of Cybernetics, Tallinn

University of Technology
james@cs.ioc.ee

Pierre-Évariste Dagand
Conor McBride

University of Strathclyde
{dagand,conor}@cis.strath.ac.uk

Peter Morris
University of Nottingham

pwm@cs.nott.ac.uk

Abstract
We present a closed dependent type theory whose inductive types
are given not by a scheme for generative declarations, but by encod-
ing in a universe. Each inductive datatype arises by interpreting its
description—a first-class value in a datatype of descriptions. More-
over, the latter itself has a description. Datatype-generic program-
ming thus becomes ordinary programming. We show some of the
resulting generic operations and deploy them in particular, useful
ways on the datatype of datatype descriptions itself. Surprisingly
this apparently self-supporting setup is achievable without paradox
or infinite regress.

1. Introduction
Dependent datatypes, such as the ubiquitous vectors (lists indexed
by length) express relative notions of data validity. They allow us to
function in a complex world with a higher standard of basic hygiene
than is practical with the context-free datatypes of ML-like lan-
guages. Dependent type systems, as found in Agda [Norell 2007],
Coq [The Coq Development Team 2009], Epigram [McBride and
McKinna 2004], and contemporary Haskell [Peyton Jones et al.
2006], are beginning to make themselves useful. As with rope, the
engineering benefits of type indexing sometimes outweigh the dif-
ficulties you can arrange with enough of it.

The blessing of expressing just the right type for the job can
also be a curse. Where once we might have had a small collection
of basic datatypes and a large library, we now must cope with a
cornucopia of finely confected structures, subtly designed, subtly
different. The basic vector equipment is much like that for lists,
but we implement it separately, often retyping the same code. The
Agda standard library [Danielsson], for example, sports a writhing
mass of list-like structures, including vectors, bounded-length lists,
difference lists, reflexive-transitive closures—the list is petrifying.
Here, we seek equipment to tame this gorgon’s head with reflection.

The business of belonging to a datatype is itself a notion rel-
ative to the type’s declaration. Most typed functional languages,
including those with dependent types, feature a datatype declara-
tion construct, external to and extending the language for defining
values and programs. However, dependent type systems also allow
us to reflect types as the image of a function from a set of ‘codes’—
a universe construction [Martin-Löf 1984]. Computing with codes,

[Copyright notice will appear here once ’preprint’ option is removed.]

we expose operations on and relationships between the types they
reflect. Here, we adopt the universe as our guiding design principle.
We abolish the datatype declaration construct, by reflecting it as a
datatype of datatype descriptions which, moreover, describes itself.
This apparently self-supporting construction is a trick, of course,
but we shall show the art of it. We contribute

• a closed type theory, extensible only definitionally, nonetheless
equipped with a universe of inductive families of datatypes;
• a self-encoding of the universe codes as a datatype in the

universe—datatype generic programming is just programming;
• a bidirectional type propagation mechanism to conceal artefacts

of the encoding, restoring a convenient presentation of data;
• examples of generic operations and constructions over our uni-

verse, notably the free monad construction;
• datatype generic programming delivered directly, not via some

isomorphic model or ‘view’ of declared types.

We study two universes as a means to explore this novel way
to equip a programming language with its datatypes. We warm up
with a universe of simple datatypes, just sufficient to describe itself.
Once we have learned this art, we scale up to indexed datatypes, en-
compassing the inductive families [Dybjer 1991; Luo 1994] found
in Coq and Epigram, and delivering experiments in generic pro-
gramming with applications to the datatype of codes itself.

We aim to deliver proof of concept, showing that a closed the-
ory with a self-encoding universe of datatypes can be made practi-
cable, but we are sure there are bigger and better universes waiting
for a similar treatment. Benke, Dybjer and Jansson [Benke et al.
2003] provide a useful survey of the possibilities, including exten-
sion to inductive-recursive definition, whose closed-form presenta-
tion [Dybjer and Setzer 1999, 2000] is both an inspiration for the
present enterprise, and a direction for future study.

The work of Morris, Altenkirch and Ghani [Morris 2007; Mor-
ris and Altenkirch 2009; Morris et al. 2009] on (indexed) containers
has informed our style of encoding and the equipment we choose
to develop, but the details here reflect pragmatic concerns about in-
tensional properties which demand care in practice. We have thus
been able to implement our work as the basis for datatypes in the
Epigram 2 prototype [Brady et al. 2009]. We have also developed a
stratified model of our coding scheme in Agda1.

2. The Type Theory
One challenge in writing this paper is to extricate our account of
datatypes from what else is new in Epigram 2. In fact, we demand
relatively little from the setup, so we shall start with a ‘vanilla’

1 This model is available at
http://personal.cis.strath.ac.uk/~dagand/levitate.tar.gz

1 2010/4/14

theory and add just what we need. The reader accustomed to de-
pendent types will recognise the basis of her favourite system; for
those less familiar, we try to keep the presentation self-contained.

2.1 Base theory
We adopt a traditional presentation for our type theory, with three
mutually defined systems of judgments: context validity, typing,
and equality, with the following forms:

Γ ` VALID Γ is a valid context, giving types to variables
Γ ` t :T term t has type T in context Γ
Γ ` s ≡ t :T s and t are equal at type T in context Γ

The rules are formulated to ensure that the following ‘sanity
checks’ hold by induction on derivations

Γ ` t :T ⇒ Γ ` VALID ∧ Γ ` T : SET
Γ ` s ≡ t :T ⇒ Γ ` s :T ∧ Γ ` t :T

and that judgments J are preserved by well-typed instantiation.

Γ; x :S ; ∆ ` J ⇒ Γ ` s :S ⇒ Γ; ∆[s/x] ` J [s/x]

We specify equality as a judgment, leaving open the details of
its implementation, requiring only a congruence including ordinary
computation (β-rules), decided, e.g., by testing α-equivalence of
β-normal forms [Adams 2006]. Coquand and Abel feature promi-
nently in a literature of richer equalities, involving η-expansion,
proof-irrelevance and other attractions [Abel et al. 2009; Coquand
1996]. Agda and Epigram 2 support such features, Coq currently
does not, but they are surplus to requirements here.

Context validity ensures that variables inhabit well-formed sets.

` VALID
Γ ` S : SET

Γ; x :S ` VALID
x 6∈ Γ

The basic typing rules for tuples and functions are also standard,
save that we locally adopt SET : SET, putting presentation be-
fore paradox [Girard 1972]. The usual remedies apply, stratifying
SET [Courant 2002; Harper and Pollack 1991; Luo 1994].

Γ; x :S ; ∆ ` VALID
Γ; x :S ; ∆ ` x :S

Γ ` s :S Γ ` S ≡ T : SET
Γ ` s :T

Γ ` VALID
Γ ` SET : SET

Γ ` VALID
Γ ` 1 : SET

Γ ` VALID
Γ ` [] :1

Γ ` S : SET Γ; x :S ` T : SET
Γ ` (x :S)×T : SET

Γ ` s :S Γ; x :S ` T : SET Γ ` t :T [s/x]
Γ ` [s, t]x .T : (x :S)×T

Γ ` p : (x :S)×T
Γ ` π0 p :S

Γ ` p : (x :S)×T
Γ ` π1 p :T [π0 p/x]

Γ ` S : SET Γ; x :S ` T : SET
Γ ` (x :S)→T : SET

Γ ` S : SET
Γ; x :S ` t :T

Γ ` λSx . t : (x :S)→T

Γ ` f : (x :S)→T
Γ ` s :S
Γ ` f s :T [s/x]

Notation. We subscript information needed for type synthesis but
not type checking, e.g., the domain of a λ-abstraction, and suppress
it informally where clear. Square brackets denote tuples, with a
LISP-like right-nesting convention: [a b] abbreviates

[
a, [b, []]

]
.

The judgmental equality comprises the computational rules be-
low, closed under reflexivity, symmetry, transitivity and structural
congruence, even under binders. We omit the mundane rules which

ensure these closure properties for reasons of space.

Γ ` S : SET Γ; x :S ` t :T
Γ ` s :S

Γ ` (λSx . t) s ≡ t [s/x] :T [s/x]

Γ ` s :S Γ; x :S ` T : SET
Γ; s :S ` t :T [s/x]

Γ ` π0 ([s, t]x .T) ≡ s :S

Γ ` s :S Γ; x :S ` T : SET
Γ; s :S ` t :T [s/x]

Γ ` π1 ([s, t]x .T) ≡ t :T [s/x]

Given a suitable stratification of SET, the computation rules yield
a terminating evaluation procedure, ensuring the decidability of
equality and thence type checking.

2.2 Finite enumerations of tags
It is time for our first example of a universe. You might want to offer
a choice of named constructors in your datatypes, we shall equip
you with sets of tags to choose from. Our plan is to implement (by
extending the theory, or by encoding) the signature

En : SET #(E :En) : SET

where some valueE : En in the ‘enumeration universe’ describes a
type of tag choices #E. We shall need some tags—valid identifiers,
marked to indicate that they are data, not variables scoped and
substitutable—so we hardwire these rules:

Γ ` VALID
Γ ` Tag : SET

Γ ` VALID
Γ ` ’s :Tag

s a valid identifier

Let us describe enumerations as lists of tags, with signature:

nE :En cE (t :Tag) (E :En) :En

What are the values in #E? Formally, we represent the choice of a
tag as a numerical index into E, via new rules:

Γ ` VALID
Γ ` 0:#(cE t E)

Γ ` n :#E
Γ ` 1+n :#(cE t E)

However, we expect that in practice, you might rather refer to these
values by tag, and we shall ensure that this is possible in due course.

Enumerations come with further machinery. Each #E needs
an eliminator, allowing us to branch according to a tag choice. For-
mally, whenever we need such new computational facilities, we add
primitive operators to the type theory and extend the judgmental
equality with their computational behavior. However, for compact-
ness and readability, we shall write these operators as functional
programs (much as we model them in Agda).

We first define the ‘small product’ π operator:

π : (E :En)(P :#E→ SET)→ SET
π nE P 7→ 1
π (cE t E) P 7→ P 0×π E (λx .P (1+x))

This builds a right-nested tuple type, demanding an object of Pi for
each i in the given finite domain. We can see these tuples as ‘jump
tables’ tabulating dependently typed functions from the domain.
We give this functional interpretation—the eliminator we need—
by the switch operator, which, unsurprisingly, iterates projection:

switch : (E :En)(P :#E→ SET)→π E P→ (x :#E)→P x
switch (cE t E) P b 0 7→ π0 b
switch (cE t E) P b (1+x) 7→ switch E (λx .P(1+x)) (π1 b) x

The π and switch operators deliver dependent elimination for
finite enumerations, but are rather awkward to use directly. We do
not write the range for a λ-abstraction, so it is galling to supply
P for functions defined by switch. Let us therefore find a way to
recover the tedious details of the encoding from types.

2 2010/4/14

Γ exprEx . term ∈ type

Γ SET 3 T . T ′ Γ T ′ 3 t . t′
Γ (t :T) . t′ ∈ T ′

Γ; x :S ; ∆ ` VALID
Γ; x :S ; ∆ x . x ∈ S

Γ f . f ′ ∈ (x :S)→T
Γ S 3 s . s ′

Γ f s . f ′ s ′ ∈ T [s ′/x]

Γ p . p′ ∈ (x :S)×T
Γ π0 p . π0 p

′ ∈ S
Γ p . p′ ∈ (x :S)×T

Γ π1 p . π1 p
′ ∈ T [π0 p

′/x]

Figure 1. Type synthesis

2.3 Type propagation
Our approach to tidying the coding cruft is deeply rooted in
the bidirectional presentation of type checking from Pierce and
Turner [Pierce and Turner 1998]. They divide type inference into
two communicating components. In type synthesis, types are pulled
out of terms. A typical example is a variable in the context:

Γ; x :S ; ∆ ` VALID
Γ; x :S ; ∆ ` x :S

Because the context stores the type of the variable, we can extract
the type whenever the variable is used.

On the other hand, in the type checking phase, types are pushed
into terms. We are handed a type together with a term, our task
consists of checking that the type admits the term. In doing so, we
can and should use the information provided by the type. Therefore,
we can relax our requirements on the term. Consider λ-abstraction:

Γ ` S : SET Γ; x :S ` t :T
Γ ` λSx . t : (x :S)→T

The official rules require an annotation specifying the domain.
However, in type checking, the Π-type we push in determines the
domain, so we can drop the annotation.

We adapt this idea, yielding a type propagation system, whose
purpose is to elaborate compact expressions into the terms of
our underlying type theory, much as in the definition of Epi-
gram 1 [McBride and McKinna 2004]. We divide expressions
into two syntactic categories: exprIn into which types are pushed,
and exprEx from which types are extracted. In the bidirectional
spirit, the exprIn are subject to type checking, while the exprEx—
variables and elimination forms—admit type synthesis. We embed
exprEx into exprIn, demanding that the synthesised type coincides
with the type proposed. The other direction—only necessary to
apply abstractions or project from pairs—takes a type annotation.

Type synthesis (Fig. 1) is the source of types. It follows the
exprEx syntax, delivering both the elaborated term and its type.
Terms and expressions never mix: e.g., for application, we instan-
tiate the range with the term delivered by checking the argument
expression. Hardwired operators are checked as variables.

Dually, type checking judgments (Fig. 2) are sinks for types.
From an exprIn and a type pushed into it, they elaborate a low-
level term, extracting information from the type. Note that we
inductively ensure the following ‘sanity checks’:

Γ e . t ∈ T ⇒ Γ ` t : T
Γ T 3 e . t⇒ Γ ` t : T

Canonical set-formers are checked: we could exploit SET :
SET to give them synthesis rules, but this would prejudice our
future stratification plans. Note that abstraction and pairing are

Γ type 3 exprIn . term

Γ s . s′ ∈ S Γ SET 3 S ≡ T
Γ T 3 s . s′

Γ ` VALID
Γ SET 3 SET . SET

Γ SET 3 S . S′ Γ; x :S ′ SET 3 T . T ′

Γ SET 3 (x :S)→T . (x :S ′)→T ′

Γ; x :S T 3 t . t ′

Γ (x :S)→T 3 λx . t . λSx . t
′

Γ SET 3 S . S′ Γ; x :S ′ SET 3 T . T ′

Γ SET 3 (x :S)×T . (x :S ′)×T ′

Γ S 3 s . s ′ Γ T [s ′/x] 3 t . t ′

Γ (x :S)×T 3 [s, t] . [s ′, t ′]x .T

Γ (x :S)→ (y :T)→U [[x , y]x .T /p] 3 f . f ′

Γ (p : (x :S)×T)→U 3 ∧f . λ((x:S)×T)p. f
′ (π0 p) (π1 p)

Γ ` VALID
Γ SET 3 1 . 1

Γ ` VALID
Γ 1 3 [] . []

Γ ` VALID
Γ En 3 [] . nE

Γ En 3 E . E ′

Γ En 3 [’t,E] . cE ’t E ′

Γ ` E :En
Γ #(cE ’t E) 3 ’t . 0

Γ #E 3 ’t . n ’t 6= ’t0
Γ #(cE ’t0 E) 3 ’t . 1+n

Γ ` E :En
Γ #(cE ’t E) 3 0 . 0

Γ #E 3 n . n ′

Γ #(cE ’t0 E) 3 1+n . 1+n ′

Γ π E (λ#Ex.T) 3
[
~t
]
. t ′

Γ (x :#E)→T 3
[
~t
]
. switch E (λ#Ex.T) t ′

Figure 2. Type checking

free of annotation, as promised. Most of the propagation rules
are unremarkably structural: we have omitted some mundane rules
which just follow the pattern, e.g., for Tag.

However, we also add abbreviations. We write ∧f , pronounced
‘uncurry f ’ for the function which takes a pair and feeds it to f one
component at a time, letting us name them individually. Now, for
the finite enumerations, we go to work.

Firstly, we present the codes for enumerations as right-nested
tuples which, by our LISP convention, we write as unpunctuated
lists of tags [’t0 . . . ’tn]. Secondly, we can denote an element by
its name: the type pushed in allows us to recover the numerical
index. We retain the numerical forms to facilitate generic opera-
tions and ensure that shadowing is punished fittingly, not fatally.
Finally, we express functions from enumerations as tuples. Any
tuple-form, [] or [,], is accepted by the function space—the gener-
alised product—if it is accepted by the small product. Propagation
fills in the appeal to switch, copying the range information.

Our interactive development tools also perform the reverse
transformation for intelligible output. The encoding of any spe-
cific enumeration is thus hidden by these translations. Only, and
rightly, in enumeration-generic programs is the encoding exposed.

Our type propagation mechanism does no constraint solving,
just copying, so it just the thin end of the elaboration wedge.
It can afford us this ‘assembly language’ level of civilisation as
En universe specifies not only the representation of the low-level
values in each set as bounded numbers, but also the presentation

3 2010/4/14

of these values as high-level tags. To encode only the former,
we should merely need the size of enumerations, but we extract
more work from these types by making them more informative. We
have also, en passant, distinguished enumerations which have the
same cardinality but describe distinct notions: #[’red ’blue] is not
#[’green ’orange].

3. A Universe of Inductive Datatypes
In this section, we describe an implementation of inductive types,
as we know them in ML-like languages. By working with fa-
miliar datatypes, we hope to focus on the delivery mechanism,
warming up gently to the indexed datatypes we really want. Dy-
bjer and Setzer’s closed formulation of induction-recursion [Dyb-
jer and Setzer 1999], but without the ‘-recursion’. An impredicative
Church-style encoding of datatypes is not adequate for dependently
typed programming, as although such encodings present data as
non-dependent eliminators, they do not support dependent induc-
tion [Geuvers 2001]. Whilst the λ-calculus captures all that data
can do, it cannot ultimately delimit all that data can be.

3.1 The power of Σ

In dependently typed languages, Σ-types can be interpreted as two
different generalisations. This duality is reflected in the notation
we can find in the literature. The notation Σx :A(B x) stresses that
Σ-types are ‘dependent sums’, generalising of sums over arbitrary
arities, where simply typed languages have finite sums.

On the other hand, our choice of notation (x :A)×(Bx) empha-
sises that Σ-types generalise products, with the type of the second
component depending on the value of the first, where simply typed
languages do not express such relative validity.

In ML-like languages, datatypes are presented as a sum-of-
products. A datatype is defined by a finite sum of constructors, each
carrying a product of arguments. To embrace these datatypes, we
have to capture this grammar. With dependent types, the notion of
sum-of-products translates into sigmas-of-sigmas.

3.2 The universe of descriptions
While sigmas-of-sigmas can give a semantics for the sum-of-
products structure in each node of the tree-like values in a datatype,
we need to account somehow for the recursive structure which ties
these nodes together. Not for the first time, we do this by con-
structing a universe [Martin-Löf 1984]. Universes are ubiquitous
in dependently typed programming [Benke et al. 2003; Oury and
Swierstra 2008], but here we seek to exploit them as the foundation
of our notion of datatypes.

To add inductive types to our type theory, we build a universe
of datatype descriptions by implementing the signature presented
in Figure 3, with codes mimicking the grammar of datatype decla-
rations. We can read a description D : Desc as a ‘pattern functor’
on SET, with JDK its action on an object, X , soon to be instantiated
recursively.

Descriptions are sequential structures, terminated by ’1, indi-
cating the empty tuple. To build sigmas-of-sigmas, we define a ’Σ
code, interpreted as a Σ-type. To request a recursive component,
we have ’ind×D , where D describes the rest of the node.

You may have noticed that we are a little coy about this pre-
sentation, writing of ‘implementing a signature’ without clarifying
how. A viable approach would simply be to extend the theory with
constants for the constructors and an operator for JDK . However, in
Section 4, you will see what we actually do. In the meantime, let us
first gain some intuition for its use by developing some examples.

Desc : SET
’1 : Desc
’Σ (S : SET) (D :S→Desc) : Desc
’ind× (D :Desc) : Desc

J K : Desc→ SET→ SET
J’1K X 7→ 1
J’Σ S DK X 7→ (s :S)× JD sKX
J’ind×DK X 7→X × JDK X

Figure 3. Universe of Descriptions

3.3 Examples
We begin with the natural numbers, now working in the high-level
expression language of Section 2.3, exploiting type propagation.

NatD : Desc
NatD 7→ ’Σ #[’zero ’suc] [’1 (’ind× ’1)]

Let us explain its construction. First, we use ’Σ to give a choice
between the ’zero and ’suc constructors. What follows depends
on this choice, so we write the function computing the rest of the
description in tuple notation. In the ’zero case, we reach the end of
the description. In the ’suc case, we attach one recursive argument
and close the description. Translating the Σ to a binary sum, we
have effectively described the functor:

NatD Z 7→ 1+Z

Correspondingly, we can see the injections to the sum:

[’zero] : JNatDK Z [’suc (z :Z)] : JNatDK Z

With a small change to this definition, we obtain the pattern
functor for lists:

ListD : SET→Desc
ListDX 7→ ’Σ #[’nil ’cons] [’1 (’Σ X λ . ’ind× ’1)]

The ’suc constructor is turned into a proper ’cons, taking an argu-
ment in X followed by a recursive argument. This code describes
the following functor:

ListDX Z 7→ 1+X×Z
Finally, we are not limited to one recursive argument. This is

demonstrated by our description of node-labelled binary trees:

TreeD : SET→Desc
TreeDX 7→ ’Σ #[’leaf ’node]

[’1 (’ind× (’Σ X λ . ’ind× ’1))]

Again, we are one evolutionary step away from ListD. However,
instead of a single call to the induction code, we add another. The
interpretation of this code corresponds to the following functor:

TreeDX Z 7→ 1+Z ×X ×Z

From the examples above, we observe that datatypes are defined
by a ’Σ whose first argument enumerates the constructors. We call
codes fitting this pattern tagged descriptions. Again, this is a clear
reminder of the sum-of-products style. Every description can be
forced into this style with a singleton constructor if necessary. We
characterise tagged descriptions thus:

TagDesc : SET
TagDesc 7→ (E :En)×(π E (λ .Desc))

de : TagDesc→Desc
de 7→ ∧λE . λD . ’Σ #E (switch E (λ .Desc) D)

It is not a great stretch to imagine that the traditional datatype
declaration syntax might desugar to the definition of a datatype via
a tagged description.

4 2010/4/14

3.4 The least fixpoint
So far, we have built pattern functors with our Desc universe. Being
polynomial functors, they all admit a least fixpoint, which we now
construct by tying the knot: the element type abstracted by the
functor is now instantiated recursively:

Γ ` D :Desc
Γ ` µD : SET

Γ ` D :Desc Γ ` d :JDK (µD)
Γ ` con d :µD

We can now build datatypes and their elements, e.g.:

Nat 7→ µ(de [[’zero ’suc], [’1 (’ind× ’1)]]) : SET
con [’zero] : Nat con [’suc (n :Nat)] : Nat

But how shall we compute with our data? We should expect an
elimination principle. Following a categorical intuition, we might
provide the ‘fold’, or ‘iterator’, or ‘catamorphism’:

cata : (D :Desc)(T : SET)→(JDK T→T)→µD→T

However, iteration is inadequate for dependent computation. We
need induction to write functions whose type depends on inductive
data. Following Benke et al. [2003], we adopt the following:

ind : (D :Desc)(P :µD→ SET)→
((d :JDK (µD))→AllD (µD) P d→P(con d))→
(x :µD)→Px

indD P m (con d) = m d (allD (µD) P (indD P m) d)

Here, All D X P d states that P : X → SET holds for every
subobject x : X in D , and all D X P p d is a ‘dependent map’,
applying some p : (x : X)→P x to each x contained in d .
The full definition (including an extra case, introduced shortly) is
presented in Figure 4. Note that ind is our first generic operation
over descriptions, albeit a hardwired operator. Any datatype we
define automatically comes with an induction principle.

We note that the very same functors JDK also admit greatest
fixpoints, and we have indeed implemented coinductive types this
way, but that is a story for another time.

3.5 Extending type propagation
We have now enough machinery to build and manipulate inductive
types at a low level. Let us now apply cosmetic surgery to the
syntactic overhead. We extend type checking of expressions:

Γ #E 3 ’c . n Γ JD nK (µ(’Σ #E D)) 3
[
~t
]
. t ′

Γ µ(’Σ #E D) 3 ’c~t . con [n, t ′]

Here ’c ~t denotes a tag ‘applied’ to a sequence of arguments, and[
~t
]

that sequence’s repackaging as a right-nested tuple. Now we
can just write data directly.

’zero : Nat ’suc (n :Nat) : Nat

Once again, the type explains the legible presentation, as well as
the low-level representation.

We may also simplify appeals to induction by type propagation,
as we have done with functions from pairs and enumerations.

Γ (d :JDK (µD))→AllD (µD) (λµDx .P) d→P [con d/x]
3 f . f ′

Γ (x :µD)→P 3 	f . indD (λµDx .P) f ′

This abbreviation is no substitute for the dependent pattern match-
ing to which we are entitled in a high-level language built on top of
this theory [Goguen et al. 2006], but it does at least make ‘assembly
language’ programming mercifully brief, if hieroglyphic.

plus : Nat→Nat→Nat
plus 7→ 	∧[(λ . λ . λy . y) (λ .∧λh. λ . λy . ’suc (h y))]

This concludes our introduction to the universe of datatype
descriptions. We have encoded sum-of-products datatypes from the
simply-typed world as data and equipped them with computation.
We have also made sure to hide the details by type propagation.

4. Levitating the Universe of Descriptions
In this section, we will fulfil our promises and show how we im-
plement the signatures, first for the enumerations, and then for the
codes of the Desc universe. Persuading this to perform was a per-
ilous pedagogical peregrination for the protagonist. Our method
was indeed to hardwire constants implementing the signatures
specified above, in the first instance, but then attempt to replace
them, step by step, with definitions: “Is 2 + 2 still 4?”, “No, it’s
a loop!”. But we did find a way, so now we hope to convey to the
reader the dizzy feeling of levitation, without the falling.

4.1 Implementing finite enumerations
In Section 2.2, we specified the finite sets of tags. We are going to
implement the En type former and its constructors. Recall:

En : SET nE :En cE (t :Tag) (E :En) :En

The nE and cE constructors are just the ‘nil’ and ‘cons’ or ordinary
lists, with elements from Tag. Therefore, we implement:

En 7→ µ(ListD Tag) nE 7→ ’nil cE t E 7→ ’cons t E

Let us consider the consequences. We discover that the type the-
ory does not need to be extended with a special type former En, or
special constructors nE and cE. Moreover, the πEP operator, com-
puting tuple types of Ps by recursion on E need not be hardwired:
we can just use the generic ind operator, as we would for any ordi-
nary program.

Note, however, that the universe decoder #E is hardwired, as
are the primitive 0 and 1+ that we use for low-level values, and
indeed the switch operator. We cannot dispose of data altogether!
We have, however, gained the ordinariness of the enumeration
codes, and hence of generic programs which manipulate them. Our
next step is similar: we are going to condense the entire naming
scheme of datatypes into itself.

4.2 Implementing descriptions
We shall now fulfil our implementation promises, encoding the
universe of descriptions. In and of itself, the codes, Desc, is nothing
but a datatype. We are in the same situation as with En: we ought
to be able to describe the codes of Desc in Desc itself. Hence, this
code would be a first-class citizen, born with the standard, generic
equipment of datatypes.

4.2.1 First attempt
Our first attempt gets stuck quite quickly:

DescD : Desc

DescD 7→ de

’1
’Σ
’ind×

 ,
’1

’Σ SET (λS . {?})
’ind× ’1

Let us explain where we stand. Much as we have done so far,
we first offer a constructor choice from ’1, ’Σ, and ’ind×. The
reader will notice that the ‘tagged’ notation we have used for the
Desc constructors now fully makes sense: these were actually the
tags we are defining. For ’1, we immediately reach the end of
the description. For ’ind×, there is a single recursive argument.
Describing ’Σ is problematic. Recall the specification of ’Σ:

’Σ (S : SET) (D :S→Desc) : Desc

So, we first pack a SET, S . We should then like a recursive argu-
ment indexed by S , but that is an exponential, and our presentation

5 2010/4/14

All : (D :Desc)(X : SET)(P :X → SET)
(xs :JDK X)→ SET

All ’1 X P [] = 1
All (’Σ S D) X P [s, d] = All (D s) X P d
All (’ind×D) X P [x , d] = P x ×AllD X P d
All (’hind×H D) X P [f , d] = ((h :H)→P (f h))×AllD X P d

all : (D :Desc)(X : SET)(P :X → SET)
(p : (x :X)→P x)(xs :JDK X)→AllD X P xs

all ’1 X P p [] = []
all (’Σ S D) X P p [s, d] = all (D s) X P p d
all (’ind×D) X P p [x , d] = [p x , allD X P p d]
all (’hind×H D) X P p [f , d] = [λh. p (f h), allD X P p d]

Figure 4. Defining and collecting inductive hypotheses

is entirely first-order so far, delivering only sums-of-products. To
code our universe, we must first enlarge it!

4.2.2 Second attempt
In order to capture a notion of higher-order induction, we add a
code ’hind× that takes an indexing set H . Intuitively, ’hind× gives
a recursive subobject for each element of H .

’hind× (H : SET) (D :Desc) : SET

J’hind×H DK X 7→ (H →X)× JDK X

Note that up to isomorphism, ’ind× is subsumed by ’hind× 1 .
However, the apparent duplication has some value. Unlike its coun-
terpart, ’ind× is first-order: we prefer not to demand dummy func-
tions from 1 in ordinary data, e.g. ’suc(λ . n). It is naı̈ve to imagine
that up to isomorphism, any representation of data will do. First-
order representations are finitary by construction, and thus admit
a richer, componentwise decidable equality than functions may in
general possess.2

We are now able to describe our universe of datatypes:

DescD : Desc

DescD 7→ de

’1

’Σ
’ind×
’hind×

 ,
’1

’Σ SET λS . ’hind× S ’1
’ind× ’1
’Σ SET λ . ’ind× ’1

The ’1 and ’ind× cases remain unchanged, as expected. We suc-
cessfully describe the ’Σ case, by a simple appeal to the higher-
order induction on S . The ’hind× case consists in packing a SET
with a recursive argument.

At a first glance, we have achieved our goal. We have described
the codes of the universe of descriptions. Taking the fixpoint of
JDescDK gives us a datatype exactly like Desc. Might we be so
bold as to take Desc 7→ µDescD as the levitating definition? If we
do, we shall come down with a bump! To complete our levitation,
just as in the magic trick, requires hidden assistance. Let us explain
the problem and reveal the ‘invisible cable’ which fixes it.

4.2.3 Final move
The definition Desc 7→ µDescD is circular, but the offensive
recursion is concealed by a prestidigitation. Expanding be de −
and propagating types as in Figure 2 reveals the awful truth:

Desc 7→ µ(’Σ #[’1 ’Σ ’ind× ’hind×]
switch [’1 ’Σ ’ind× ’hind×] (λ .Desc)’1
’Σ SET λS . ’hind× S ’1
’ind× ’1
’Σ SET λ . ’ind× ’1

)

The recursion shows up only because we must specify the return
type of the general-purpose switch, and it is computing a Desc! Al-
though type propagation allows us to hide this detail when defining

2 E.g., extensionally, there is one inhabitant of #[]→Nat; intensionally,
there is a countable infinitude which it is not safe to collapse.

a function, we cannot readily suppress this information and check
types when switch is fully applied.

We are too close to give up now. If only we did not need to
supply that return type, especially when we know what it must be.
We eliminate the recursion by specialising switch:

switchD : (E :En)→(π E λ .Desc)→#E→Desc

The magician’s art rests here, in this extension. We conceal it
behind a type propagation rule for switchD which we apply with
higher priority than for switch in general.

Γ π E (λ#Ex.Desc) 3
[
~t
]
. t ′

Γ #E→Desc 3
[
~t
]
. switchD E t ′

As a consequence, our definition above now propagates without in-
troducing recursion. Of course, by pasting together the declaration
of Desc and its internal copy, we have made it appear in its own
type. Hardwired as a fait accompli, this creates no regress, although
one must assume the definition to recheck it.

We have levitated Desc. Beyond its pedagogical value, this
exercise has several practical outcomes. First of all, it reveals that
the Desc universe is just plain data. As any piece of data, it can
therefore be inspected and manipulated. Moreover, it is expressed
in the Desc universe. As a consequence, it is equipped, for free,
with an induction principle. So, our ability to inspect and program
with Desc is not restricted to a meta-language: we now have all
the necessary equipment in the theory to program over datatypes.
Generic programming is just programming.

4.3 The generic catamorphism
In Section 3.4, we hardwired a dependent indunction principle,
instead of the catamorphism. However, in some circumstances, the
full power of a dependent elimination is not necessary. Let us now
derive the catamorphism from ind principle.

The catamorphism is defined by induction on the description
D , with a readily propagated non-dependent return type T . Given
a node xs and the induction hypotheses, the method ought to build
an element of T . Provided that we know how to make an element
of JDK T , this step will be performed by the algebra f . Let us take
a look at this jigsaw:

cata : (D :Desc)(T : SET)→(JDK T→T)→µD→T
cataD T f 7→ 	λxs. λhs. f {?}

We are left with filling the hole. Recall that we have xs : JDK µD
and hs : All D (µD) (λ .T) xs at hand. Our goal is to make
an element of JDK T . Intuitively, xs is of the right shape, but its
sub-elements are of the wrong type. On the other hand, for each
sub-element of xs , hs gives us the corresponding element in T .
Therefore, to construct an element of JDK T , we must replace
the recursive components of xs by their counterparts from hs . Let
us write a program to do that—please forgive us if we lapse to a

6 2010/4/14

pattern matching notation, for readability’s sake.

replace : (D :Desc)(X ,Y : SET)
(xs :JDK X)→AllD X (λ .Y) xs→ JDK Y

replace ’1 X Y [] [] 7→ []
replace (’Σ S D) X Y [s, d] d ′ 7→ [s, replace (D s) X Y d d ′]
replace (’ind×D) X Y [x , d] [y , d ′] 7→

[y , replaceD X Y d d ′]
replace (’hind×H D) X Y [f , d ′] [g , d ′] 7→

[g , replaceD X Y d d ′]

Filling the hole in cata with replace D (µD) T xs hs closes the
problem. In the type theory, we have built a generic catamorphism.
Any datatype will now come equipped with this operation, for free.

With this example, we have shown how we can derive a generic
operation, the catamorphism, from a pre-existing generic operation,
the induction principle. This has been made possible by our ability
to manipulate descriptions as first-class objects: the catamorphism
is, basically, a function mapping a Desc to a datatype specific
operation. This is a form of polytypic programming, as we learned
from PolyP [Jansson and Jeuring 1997].

4.4 The generic free monad
In this section, we will turn to a more ambitious generic operation
on datatype. Given a functor, represented as a tagged description,
we build the free monad over this functor.

Let us recall the free monad construction. Given a functor F ,
the free monad over F is defined by the following datatype:

data FreeMonad (F : SET→ SET)(X : SET) : SET where
Var : X →FreeMonad F X
Composite : F (FreeMonad F X)→FreeMonad F X

Being an inductive type, this FreeMonad datatype is itself defined
by a pattern functor. It is given by:

FreeMonadD F X Z 7→ X +FZ

In our setting, the free monad construction will take the functor
as a tagged description, a set X of variables, and will compute the
tagged description of the corresponding free monad. Implementing
this function is surprisingly easy:

∗ : TagDesc→ SET→TagDesc
[E ,D]∗ X 7→

[
[’var ,E], [’Σ X ’1,D]

]
We simply add a constructor, ’var, and define its argument to be
a ’Σ X ’1, that is an element of X . We keep E and D as they
were, hence leaving the other constructors unchanged. Unfolding
the interpretation of this definition, we convince ourselves that this
corresponds to the functor FreeMonadD. The fixpoint operation
ties the knot and gives us the full-blown free monad construction.

Of course, we must equip the resulting datatypes with opera-
tions delivering a monadic interface. As expected, λx . ’var x plays
the rôle of return, embedding variables into terms. The bind oper-
ation corresponds to substitution. We will now implement it, as a
generic function.

Our implementation will appeal to the cata function developed
previously. So, let us write down the types, and fill as much argu-
ments to cata as possible:

subst : (D :TagDesc)(X ,Y : SET)→(X →µ(de (D∗Y)))→
µ(de (D∗X))→µ(de (D∗Y))

substD X Y σ 7→ cata (de (D∗X)) (µ(de (D∗Y))) {?}

We are left with implementing the algebra of the catamorphism.
Intuitively, its role is to catch appearances of ’var x and replace

them by σ x . This corresponds to the following definition:

apply : (D :TagDesc)(X ,Y : SET)→(X →µ(deD∗X))→
JdeD∗X K µ(deD∗Y)→µ(deD∗Y)

applyD X Y σ [’var, x] 7→ σ x
applyD X Y σ [c, xs] 7→ con [c, xs]

Filling the sub-goal with apply D X Y σ completes the im-
plementation. To sum up, we have implemented the free monad
construction for an arbitrary tagged description. This gives the de-
veloper the ability, for any datatype, to extend it with a notion
of variable. Then, we have equipped this structure with the corre-
sponding monadic operation, bind and return. This construction is
an example of type-indexed datatype [Hinze et al. 2002], as found
in Generic Haskell: from a datatype, we build a new datatype and
equip it with its structure.

5. A Universe of Inductive Families
So far, we have explored the well-known realm of inductive types.
We have built upon our intuition of ML-like datatypes. In our
dependent setting, we have provided these datatypes by the mean
of Desc, a universe of descriptions.

Working with dependent types fosters new opportunities for
datatypes. The typical example is bounded lists, also known as
vectors. A vector is a list decorated by its length. Having this
information prevents hazardous operations, such as taking the head
of an empty vector: the head function only takes vectors of length
’suc n , as enforced by its type. This is made possible by the
specificity of dependent types: a term – the length – can influence
a type – the vector type.

However, these datatypes cannot be defined by mere induction.
In the case of vectors, for instance, we have to define the whole
family of vectors in one go: vectors of all sizes need to be defined at
the same time. In dependently-typed languages, the basic grammar
of datatypes is that of inductive families. To capture this grammar,
we rely on indexing.

5.1 The universe of indexed descriptions
In the previous section, we have presented the Desc universe as a
grammar of functors in the category SET. We have seen how to
code inductive types in this setting. To describe an inductive family
indexed by I : SET, we use endofunctors on the category SETI .
We call these indexed functors. I → IDesc I is our grammar for
describing these functors. Hence, IDesc and its interpretation have
the following types:

IDesc (I : SET) : SET

J K :(I:SET)→ IDesc I →(I → SET)→ SET

Given these components, we may interpret a function R :
I → IDescI is interpreted as a function I → SETI → SET, which is
isomorphic to SETI → SETI , the type of endofunctors on SETI . In-
ductive families are fixpoints defined over these indexed functors,
hence computing a fixpoint of the entire family of functors:

Γ ` I : SET Γ ` R :I → IDesc I
Γ ` µIR :I → SET

Γ ` I : SET Γ ` R :I → IDesc I
Γ ` i :I Γ ` x :JR iKI (µIR)

Γ ` con x :µIR i

However, we still have to define the actual grammar. We obtain
it by evolving Desc to cope with indexing. The code of IDesc is
presented in Figure 6. Induction on indexed descriptions is defined

7 2010/4/14

IDesc (I : SET) : SET
’var (i :I) : IDesc I
’const (A : SET) : IDesc I
(D : IDesc I) ’×(D : IDesc I) : IDesc I
’Σ (S : SET) (D :S→ IDesc I) : IDesc I
’Π (S : SET) (D :S→ IDesc I) : IDesc I

J K :(I:SET)→ IDesc I →(I → SET)→ SET
J’var iKI X 7→ X i
J’constK KI X 7→ K
JD ’×D ′KI X 7→ JDKI X × JD ′KI X
J’Σ S DKI X 7→ (s :S)× JD sKI X
J’Π S DKI X 7→ (s :S)→ JD sKI X

Figure 6. Universe of indexed descriptions

by:

indI : (I:SET)→(R :I → IDesc I)(P : ((i :I)×µIR i)→ SET)→
((i :I)(xs :JR iKI (µIR))→
JAllI(R i) (µIR) xsK P→P [i , con xs])→
(i :I)(x :µIR i)→P [i , x]

indI R P m i (con xs) =
m i xs (allIR i µIR P (∧λi . λxs. indI R P m) xs)

Where the operators AllI and allI are presented in Figure 5. As for
descriptions, we can compute a generic catamorphism, cataI, from
indI.

5.2 Examples
Natural numbers: In order to gain some intuition of IDesc, let us
re-implement the pattern functor of natural numbers:

NatD : IDesc 1
NatD 7→ ’Σ (#[’zero ’suc]) [’const 1 ’var []]

Because Nat is just an inductive type, NatD is a 1-indexed
functor. Therefore, the recursive argument is materialised by ’var[],
where we were using ’ind× in the previous presentation. This
transformation generalises to all inductive types. Moreover, we
gain the ability to write mutually recursive inductive types.

Indexed descriptions: Note that IDescI itself is merely an induc-
tive type. Hence, we can describe it in IDesc 1:

IDescD : (I : SET)→ IDesc 1
IDescD I 7→ ’Σ (#[’var ’const ’× ’Σ ’Π])

’const I
’const SET
’var [] ’× ’var []
’Σ SET (λS . ’Π S (λ . ’var []))
’Σ SET (λS . ’Π S (λ . ’var []))

Therefore, this universe is self-describing, hence can be levi-

tated. As before, we rely on a special purpose switchID operator to
build the finite function [. . .] without mentioning IDesc.

Vectors: So far, the examples we have seen live in IDesc 1, hence
are not using any indexing. We remedy this by encoding the vec-
tors. Recall that the constructors ’vnil and ’vcons are only defined
for an index ’zero and ’suc respectively.:

data Vec (X : SET) : (n :Nat)→ SET where
’vnil : VecX ’zero)
’vcons : (n:Nat)→X →VecX n→VecX (’suc n)

One way to code constrained datatypes is to appeal to equality.
The constraints are therefore captured by equations in the datatype.

In this case, we obtain the following definition:

VecD : SET→Nat→ IDesc Nat
VecDX n = ’Σ(#[’vnil ’vcons]) ’const (n == ’zero)

’Σ Nat λm. ’varm ’×
’const (n == ’sucm)

In the ’vnil case, a proof must be provided that the index is

equal to ’zero. In the ’vcons case, we first store an element m
of Nat. However, the constraint stipulates that m cannot be any
natural numbers: it must be “the index minus one”. This translates
into the constraint n == ’suc m , given a suitable presentation of
propositional equality.

We have been careful to keep our setup agnostic with respect to
notions of propositional equality. Any will do, according to your
convictions, or for vectors, none—equality for Nat is definable
by recursion—and many variations are popular. The traditional
homogeneous identity type used in Coq is not adequate to support
dependent pattern matching, but its heterogeneous variant, allowing
equations between elements of arbitrary types, is sufficient to allow
the translation of structurally recursive pattern matching programs
to indI [Goguen et al. 2006]. Our present inclination is towards the
extensional equality proposed by Altenkirch et al. [2007], which
also sustains the translation.

However, sometimes, we can actually remove these equations
altogether. Let us look back at Vec. We note that the equations are
introduced because we are storing the index of the inductive family.
However, inductive families need not store their indices [Brady
et al. 2003]. By examining the incoming index, we can apply the
forcing and de-tagging optimisations to our initial definition of Vec.
This gives the following, equivalent definition:

VecD (X : SET) : Nat→ IDesc Nat
VecDX ’zero 7→ ’const 1
VecDX (’suc n) 7→ ’constX ’× ’var n

The equations (and constructors) have simply disappeared. A sim-
ilar example is Fin, specified by:

data Fin : (n :Nat)→ SET where
’Fz : (n:Nat)→Fin (’suc n)
’Fs : (n:Nat)→Fin n→Fin (’suc n)

In this case, we can apply forcing, but not detagging, since both ’Fz
and ’Fs both target ’suc:

FinD : Nat→ IDesc Nat
FinD ’zero 7→ ’Σ (#[]) []
FinD (’suc n) 7→ ’Σ(#[’Fz ’Fs])[

’const 1
’var n

]
We should precise that forcing a description is not guaranteed

to remove all constraints. It is subject to future work to see if con-
straints can be entirely eradicated, or presented more conveniently
to the developer. Finally, it is worth mentioning that these optimi-
sations are source-to-source transformations on descriptions.

Tagged indexed descriptions: When defining an indexed datatype,
we have access to its index. Therefore, we can use this index to in-
fluence the choice of constructors. This captures the essence of
dependent datatypes: a term – the index – has the ability to influ-
ence the datatype. We define tagged indexed descriptions to capture
this specificity.

We divide a tagged indexed description in two parts: first, the
constructors that do not depend on the index; then, the constructors
that do. The non-dependent part mirrors the definition for non-
indexed descriptions. The index-depend part simply indexes the

8 2010/4/14

AllI : (I:SET)→(D : IDesc I)(X :I → SET)→
JDKI X → IDesc ((i :I)×X i)

AllI (’var i) X x = ’var [i , x]
AllI (’constK) X k = ’const 1
AllI (D ’×D ′) X [d , d ′] = AllID X d ’×AllID ′ X d ′

AllI (’Σ S D) X [s, d] = AllI(D s) X d
AllI (’Π S D) X f = ’Π S (λs.AllI(D s) X (f s))

allI : (I:SET)→(D : IDesc I)(X :I → SET)(P : ((i :I)×X i)→ SET)→
((x : (i :I)×X i)→P x)→ (xs :JDKI X)→ JAllID X xsK P

allI (’var i) X P p x = p [i , x]
allI (’constK) X P p k = []
allI (D ’×D ′) X P p [d , d ′] = [allID X P p d , allID ′ X P p d ′]
allI (’Σ S D) X P p [s, d] = allI(D s) X P p d
allI (’Π S D) X P p f = allI(D a) X P p (f a)

Figure 5. Indexed induction predicates

choice of constructors by I . Hence, by inspecting the index, it is
possible to enable or disable constructors.

TagIDesc I 7→ AlwaysD I × IndexedD I
AlwaysD I 7→ (E :En)×((i :I)→π E (λ . IDesc I))
IndexedD I 7→ (F :I →En)×((i :I)→π (F i) (λ . IDesc I))

In the case of a tagged Vec, for instance, for the index ’zero, we
would only propose the constructor ’nil. Similarly, for ’suc n, we
would only propose the constructor ’cons.

We use the notation TID to denote the indexed description
computed from the tagged indexed description TID . Its expansion
is similar to the definition of de but more involved.

Typed expressions: We are going to define a syntax for a small
typed language. We consider two types, natural numbers and
booleans:

Ty 7→ #[’nat ’bool]

An expression of this language is either a value, a conditional
expression, an addition of numbers, or a comparison of numbers.
Informally, their type is the following:

’cond : ∀ty :Ty.’bool→ ty→ ty→ ty
’plus : ’nat→ ’nat→ ’nat
’le : ’nat→ ’nat→ ’bool
’val : ∀ty :Ty.Val ty→ ty

The function Val, used in the definition of ’val, simply maps a
type ty of the object language to the corresponding type in the
host language. Hence, the arguments of ’val are ensured to be of
the expected type. We assume that Nat and Bool represent natural
numbers and booleans in the host language, equipped with an
addition operation plusHost and a comparison function leHost. We
define Val as follows:

Val : Ty→ SET
Val ’nat = Nat
Val ’bool = Bool

In our universe of descriptions, the syntax of this language
is described by a tagged indexed description. We use the index
to carry the type: the resulting description is indexed by Ty. We
observe that some constructors are always defined, namely ’cond
and ’val. On the other hand, the ’plus and ’le constructors are index-
dependent. ’plus is defined if and only if the result type – the index
– is ’nat, whereas ’le is defined if and only if the index is ’bool. The
actual code precisely follows this intuition, as shown in Figure 7.

Having implemented the syntax, we would like to describe its
semantics. To do so, we implement an evaluator. The type of the
evaluator is:

eval⇓ : (ty :Ty)→µTyExprD ty→Val ty

The type of eval⇓ is strikingly similar to a catamorphism. Indeed,
implementing a single step of evaluation – the algebra – is suffi-
cient, as cataI gives, for free, the full evaluator. The implementa-

ExprD : TagIDesc Ty
ExprD 7→ (ExprAD,ExprID)

ExprAD : AlwaysD Ty

ExprAD 7→

 [’val ’cond],

λty .

[
’const (Val ty)
’var ’bool ’× ’var ty ’× ’var ty

]
ExprID : IndexedD Ty

ExprID 7→
[

[[’plus] [’le]],
λ . ’var ’nat ’× ’var ’nat

]
Figure 7. Syntax of typed expressions

tion is as follows:

eval↓ : (ty :Ty)→ JExprD tyKTy Val→Val ty
eval↓ [’val, x] = x
eval↓

[
’cond,

[
’true, [x ,]

]]
= x

eval↓
[
’cond,

[
’false, [, y]

]]
= y

eval↓ ’nat
[
’plus, [x , y]

]
= plusHost x y

eval↓ ’bool
[
’le, [x , y]

]
= leHost x y

eval⇓ : (ty :Ty)→µTyExprD ty→Val ty
eval⇓ ty term = cataITyExprD Val eval↓ ty term

Hence, we have defined the syntax of a typed language of
arithmetic and boolean expressions. We have given its semantics
through an evaluation function. Provided a one step semantic of the
language, the big step interpreter is granted without effort thanks to
the generic catamorphism.

However, so far, we are only able to define and manipulate
closed terms. By abstracting over Val, it is possible to build and
manipulate open terms, that is, terms with variables. Following Val,
we define Var by:

Var : En→Ty→ SET
Vardom = #dom

Whereas Val was mapping the type to the corresponding host type,
Var maps types to a finite set. The finite set – the context – contains
closed terms. A variable is therefore a ’val that contains a pointer
to a particular element of the finite set – an element of #dom .

Consequently, replacing Val ty by (Val ty+Vardom ty) in Fig-
ure 7 turns the language of closed terms into a language of opened
terms with variables and constants. For readability, we abbreviate
λty .Val ty+Vardom ty by Val+Vardom . This defines a new in-
dexed description, called ExprDVar,dom .

Again, we would like to give a semantics to this extended
language. We proceed in two steps: first, we replace the variables
by their value in the context; then, we evaluate the resulting closed
term. Thanks to eval⇓, the second problem is already solved. Let
us focus on discharging variables from the context. Again, we can

9 2010/4/14

subdivide this problem: first, discharging a single variable from the
context; then, applying this discharge function on every variables
in the term.

The discharge function is relative to the required type and a
context of the right type. Its action is to map values to themself,
and variables to their value in context. This corresponds to the
following function:

discharge : (ty :Ty)(dom :En)
(γ :π dom (λ . µTyExprDVar,dom ty))→
(Val ty+Vardom ty)→µTyExprDVar,dom ty

discharge ty dom γ (left x) 7→ con [’val, x]
discharge ty dom γ (right v) 7→

switch dom (λ . µTyExprDVar,dom ty) γ v

We are now left with applying discharge over all variables of
the term. The type of this operation is the following:

substExpr : (dom :En)
(γnat :Γty dom ’nat)(γbool :Γty dom ’bool)
(σ : (dom :En)

(γnat :Γty dom ’nat)
(γbool :Γty dom ’bool)
(ty :Ty)→(Val ty+Vardom ty)→
µTyExprD ty)→

(ty :Ty)→µTyExprDVar,dom ty→
µTyExprD ty

Where Γty corresponds to a context, defined by:

Γty : En→Ty→ SET

Γty dom ty = π dom (λ . µTyExprDVar,dom ty)

Abstracting away the book-keeping introduced by contexts, this
definition looks familiar. It is similar to a monadic bind. This is not
surprising as we are defining a first-order syntax with variables:
our datatype enjoys more structure than what we are given. We are
facing a free monad, where ’val is the return introducing variables.
For convenience, we wrap discharge in a σ function that picks the
context of the right type:

σ dom γnat γbool ty var 7→ discharge ty dom γty var

Where γty is short for case ty of

{
’nat→ γnat
’bool→ γbool

Instead of implementing substExpr in this special case, we are
now going to implement the free indexed-monad construction.

5.3 Free indexed monad
In Section 4.4, we have built a free monad operation for simple
descriptions. The process is similar in the indexed world. Namely,
given an indexed functor, we derive the indexed functor coding its
free monad:
∗ : (I:SET)→(R :TagIDesc I)(X :I → SET)→TagIDesc I

[E ,F]∗
I
R 7→[[

’cons ’var (π0 E), λi . [’const (R i), (π1 E) i]
]
,F
]

Just as in the universe of descriptions, this construction comes
with an obvious return and a substitution operation, the bind. Its
definition is the following:

substI : (I:SET)→(R :TagIDesc I)(X ,Y :I → SET)→
((i :I)→X i→µI (R∗I Y) i)→
(i :I)(D :µI (R∗I X) i)→µI (R∗I Y) i

substIX Y R σ i t =

cataI R∗ X (µR∗ Y) (applyI R X Y σ) i t

Where applyI is defined as follow:

applyI : (I:SET)→(R :TagIDesc I)(X ,Y :I → SET)→
((i :I)→X i→µI (R∗I Y) i)→
(i :I)→ J(R∗I X) iKI µI (R∗I Y) →µI (R∗I Y) i

applyI R X Y σ i [’var, x] 7→ σ i x
applyI R X Y σ i [c, ys] 7→ con [c, ys]

Let us now consider two examples of free indexed monad.

Typed expressions: In Section 5.2, we had the intuition that our
datatypes ExprD and ExprDVar,dom enjoy a monadic structure. We
had identified the variable substitution operation as the bind of
a free monad. To exhibit its monadic structure, we first have to
massage the definition of our datatype.

As previously mentioned, we identify ’val with the return of
the free monad, while the other components are the action of the
monad. As a result, the definition is similar to ExprD presented in
Figure 7, replacing ExprAD by ExprADFree:

ExprADFree : AlwaysD Ty

ExprADFree 7→
[

#[’cond],
λty .

[
’var ’bool ’× ’var ty ’× ’var ty

]]
We call this datatype ExprDFree. By a simple unfolding of def-

inition, we note that ExprDFree∗
Ty Val corresponds to the syntax of

closed terms, ExprD. Similarly, ExprDFree∗
Ty (Val+Vardom) corre-

sponds to expressions with variables, ExprDVar,dom .
The evaluator for closed terms we implemented in Section 5.2

remains unchanged. It reduces closed terms in ExprDFree∗
Ty Val ty

to values in Val ty . We are left with implementing substExpr. We
simply have to fill in the right arguments to substI, the type guiding
us:

substExpr dom γnat γbool σ ty term 7→
substITy ExprDFree (Val+Vardom) Val

(σ dom γnat γbool) ty term

Hence completing our implementation of the open terms inter-
preter.

We have defined a well-typed language of arithmetical expres-
sions, taking advantage of indexing. Then, we have implemented an
evaluator for closed term, based on the generic catamorphism func-
tion. Using the free monad construction, we have automatically de-
rived the language of open terms. Using its monadic structure, we
have implemented the interpreter for open terms in context. Hence,
without much efforts, we have described the syntax of a well-typed
language, together with its semantics.

Indexed descriptions: Another instance of free monad is IDesc
itself. Indeed, ’var is nothing but the return. The remaining con-
structors are the carrier functor, trivially indexed by 1. The carrier
functor is described as follow:

IDescDFree : AlwaysD 1

IDescDFree 7→

[’const ’× ’Σ ’Π],

λ .

 ’const SET
’var [] ’× ’var []
’Σ SET (λS . ’Π S (λ . ’var []))
’Σ SET (λS . ’Π S (λ . ’var []))

Then, we get IDesc by building its free monad:

IDescD : (I : SET)→TagIDesc 1
IDescD I 7→ [IDescDFree, [λ . [],λ . []]]

∗
1 λ . I

The fact that indexed descriptions are closed under substitution
is potentially of considerable utility, if we can exploit this fact:

JσDKJ X = JDKI λi. JσiKJ X where σ : I→ IDesc J

10 2010/4/14

By observing that a description can be decomposed via substitu-
tion, we split its meaning into a superstructure of substructures,
e.g. a ‘database containing salaries’, ready for traversal operations
preserving the former and targeting the latter.

In this section, we have presented the universe of indexed de-
scription. It embraces indexed families of types and, as such, allows
us to write dependent datatypes. Hence, we have presented several
example of indexed datatypes. In this context, we have presented
the free monad construction, together with its monadic operations.

6. Discussion
6.1 Universe stratification
As such, our type theory suffers from an inconsistency. Indeed,
the typing rule SET : SET leads to Girard’s paradox. We made
that choice for presentational convenience, as universe stratifi-
cation is orthogonal to our work. Nonetheless, our universe of
description stratifies naturally. IDesc is self-encoding only in a
level-polymorphic sense. Unsurprisingly, IDesc at level l is of type
SETl+1. Similarly, the interpretation of IDesc at level l is an object
of type SETl:

IDescl(I : SETl+1) : SETl+1

’var (i :I) : IDesclI
’const (A : SETl) : IDesclI
(D : IDesclI) ’×(D : IDesclI) : IDesclI
’Σ (S : SETl) (D :S→ IDesclI) : IDesclI
’Π (S : SETl) (D :S→ IDesclI) : IDesclI

J K l :(I:SETl+1)→ IDescl I →(I → SETl)→ SETl

. . .

Crucially, the types of data stored in an IDesclI all live no higher—
we may store an I and a SETl in a SETl+1. The code for IDesclI is
an element of IDescl+11, so there is a spiral, not a cycle. We have
checked the construction using Agda’s universe polymorphism,
coding IDesc in itself and have proving the isomorphism between
the host and the embedded universes.

6.2 Related work
Generic programming is a vast topic. We refer our reader to Garcia
et al. [2003] for a broad overview of generic programming in
various languages. In the sole context of Haskell, there is a myriad
of proposals. These approaches are compared in Hinze et al. [2007]
and Rodriguez et al. [2008].

Our approach is follow the polytypic programming style, as
initiated by PolyP [Jansson and Jeuring 1997]. Indeed, we build
generic functions by induction on pattern functors. Unlike PolyP,
we do not have to resort to preprocessing: our datatypes are, na-
tively, nothing but codes.

We share with Generic Haskell the type-indexed datatype ap-
proach [Hinze et al. 2002], as exemplified by the free monad con-
struction: from datatype, we can compute new datatypes and equip
them with their structure. Generic Haskell also features generic
views [Holdermans et al. 2006], transparently transforming the
structure of datatype definitions. An example is the tagged descrip-
tions, presenting datatypes under a sum-of-sigmas angle. Unlike
Generic Haskell, we do not have to modify the compiler to obtain
views on datatypes: we can massage descriptions from inside our
language.

Unlike Generic Haskell, we do not support polykinded pro-
gramming [Hinze 2000]. Our descriptions are limited to endo-
functors on SET and SETI . While we could encode higher-kinded
datatypes, we do not plan to adopt this strategy. As future work,
we plan to extend our universe to capture higher-kinded definitions
and generic functions over them. For the same reason, arity-generic

programming [Weirich and Casinghino 2010] is out of reach of our
current presentation.

Another generic programming paradigm is Scrap Your Boiler-
plate [Lämmel and Peyton Jones 2003] (SYB). Our proposal is dif-
ferent in various ways. The corner stone of SYB is the spine view
of datatype constructors. A piece of data is a spine composed by
a constructor applied to some arguments. SYB provides a com-
binator library to write generic functions over spines. This relies
on a Typeable type-class, allowing dynamic dispatch to datatype-
specific operations. As a result, SYB is not reflexive: it is re-
stricted to datatypes instanciating Typeable. Moreover, it is limited
to building generic functions, hence type-indexed datatypes cannot
be implemented in this framework.

Generic programming in dependent types is not new either.
Norell [2002] has given a formalization of polytypic programming
in Alfa, a precursor of Agda. Similarly, Verbruggen et al. [2008,
2009] have developed a framework for polytypic programming in
the Coq theorem prover. However, these works aim at modelling
PolyP or Generic Haskell in a dependently-typed setting for the
purpose of proving correctness properties of Haskell code. Our
approach is different in that we aim at building a foundation for
datatypes, in a dependently-typed system, for a dependently-typed
system.

Closer to us is the work of Benke et al. [2003]. This seminal
work introduced the usage of universes for developing generic
programs. Our universes share similarities to theirs: our universe
of descriptions is similar to their universe of iterated induction, and
our universe of indexed descriptions is equivalent to their universe
of finitary indexed induction. This is not surprising, as we share the
same source of inspiration, namely induction-recursion.

However, we differ in several ways. First, there approach is gen-
erative: each universe extends the base type theory with both type
formers and elimination rules. Thanks to levitation, we only rely on
a generic induction and a specialised switchD. Second, the authors
do not tackle the issue of programming with codes. We have shown
how to abstract away codes and give a convenient presentation to
the developer. The authors often resort to an extensional equality,
while we have given an equality-agnostic presentation. Beside, our
universes are arranged so as to use definitional equality as much as
possible. Hence, in practice, the developer is relieved from many
proof obligations.

7. Conclusion
In this paper, we have presented a universe of datatypes for a de-
pendent type theory. To ensure the generality of our proposal, this
system has been built in a familiar type theory, with no assump-
tion about the underlying propositional equality. Because our ap-
proach is extensively using codes for universes, we have given a
rationalised presentation of codes. Thanks to type propagation, we
make practical the usage of codes for datatypes.

To introduce our approach, we have presented a universe of de-
scription. This universe has the expressive power of simple induc-
tive types, as found in ML-like languages. Further, we have imple-
mented this universe as a self-described object. Hence, for a min-
imal extension of the type-theory, we get a closed, self-describing
presentation of datatypes, where datatypes are just data.

To capture dependent datatypes, we generalise our presenta-
tion to support indexing. The universe of indexed descriptions
thus built encompasses inductive families. Again, this universe is
self-described. We have developed several examples of dependent
datatypes and generic functions over them.

We have presented a self-describing, self-hosted universe for
datatypes. We have shown the benefit of such approach, by our
ability to reflect datatypes in the type-theory. This fosters a new
way of considering generic programming: just as programming.

11 2010/4/14

Moreover, despite its egg-and-chicken nature, this presentation is
free of paradox: it has been formalised in Agda, admitting a correct
stratification.

Future work: As such, indexed descriptions do not cover sev-
eral extensions of inductive families. One of them is induction-
recursion. An interesting question is to locate indexed descriptions
in the spectrum between inductive families and indexed induction-
recursion. Another popular extension we plan to consider is to al-
low internal fixpoints and higher-kinded datatypes.

Also, we have presented a generic notion of syntax with vari-
ables, thanks to the free monad construction. We would like to ex-
plore a notion of syntax with binding. Interestingly, introducing in-
ternal fixpoints or kinds would turn our universe into such syntax
with binding. Once again, levitation would reveal itself convenient
by providing generic tools to handle binding.

Acknowledgments
We are gratefully to José Pedro Magalhães for his helpful com-
ments on a draft of this paper. J. Chapman was supported by the
Estonian Centre of Excellence in Computer Science, EXCS, fi-
nanced by the European Regional Development Fund. P.-É. Da-
gand, C. McBride and P. Morris are supported by the Engineer-
ing and Physical Sciences Research Council, Grants EP/G034699/1
and EP/G034109/1.

References
A. Abel, T. Coquand, and M. Pagano. A modular type-checking algo-

rithm for type theory with singleton types and proof irrelevance. In P.-L.
Curien, editor, TLCA, volume 5608 of Lecture Notes in Computer Sci-
ence, pages 5–19. Springer, 2009. ISBN 978-3-642-02272-2.

R. Adams. Pure type systems with judgemental equality. J. Funct. Pro-
gram., 16(2):219–246, 2006.

T. Altenkirch, C. McBride, and W. Swierstra. Observational equality, now!
In PLPV ’07, pages 57–68. ACM, 2007.

M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and
proofs in dependent type theory. Nordic Journal of Computing, 10(4):
265–289, 2003.

E. Brady, C. McBride, and J. McKinna. Inductive families need not store
their indices. In S. Berardi, M. Coppo, and F. Damiani, editors, TYPES,
volume 3085 of Lecture Notes in Computer Science, pages 115–129.
Springer, 2003. ISBN 3-540-22164-6.

E. Brady, J. Chapman, P.-E. Dagand, A. Gundry, C. McBride, P. Morris,
and U. Norell. An Epigram implementation, 2009. URL http://www.
e-pig.org/darcs/Pig09/src/Epitome.pdf.

T. Coquand. An algorithm for type-checking dependent types. Sci. Comput.
Program., 26(1-3):167–177, 1996.

J. Courant. Explicit universes for the calculus of constructions. In TPHOLs
’02, pages 115–130, London, UK, 2002.

N. A. Danielsson. The Agda standard library.

P. Dybjer. Inductive sets and families in Martin-Löf’s type theory. In
G. Huet and G. Plotkin, editors, Logical Frameworks. CUP, 1991.

P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. In J.-Y. Girard, editor, TLCA, volume 1581 of Lecture Notes
in Computer Science, pages 129–146. Springer, 1999. ISBN 3-540-
65763-0.

P. Dybjer and A. Setzer. Induction-recursion and initial algebras. In Annals
of Pure and Applied Logic, volume 124, 2000.

R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock. A comparative
study of language support for generic programming. In OOPSLA ’2003,
pages 115–134, 2003.

H. Geuvers. Induction is not derivable in second order dependent type
theory. In TLCA, pages 166–181, 2001.

J.-Y. Girard. Interprétation functionelle et Elimination des coupures dans
l’arithmétique d’ordre supérieure. PhD thesis, Université Paris VII,
1972.

H. Goguen, C. McBride, and J. McKinna. Eliminating dependent pattern
matching. In Algebra, Meaning and Computation, Lecture Notes in
Computer Science, chapter 27, pages 521–540. 2006.

R. Harper and R. Pollack. Type checking with universes. In TAPSOFT ’89,
pages 107–136, 1991.

R. Hinze. Polytypic values possess polykinded types. In R. Backhouse and
J. N. Oliveira, editors, Mathematics of Program Construction, volume
1837 of Lecture Notes in Computer Science, chapter 2, pages 2–27.
2000.

R. Hinze, J. Jeuring, and A. Löh. Type-indexed data types. In MPC ’02,
pages 148–174, 2002.

R. Hinze, J. Jeuring, and A. Löh. Comparing approaches to generic pro-
gramming in Haskell. In R. Backhouse, J. Gibbons, R. Hinze, and
J. Jeuring, editors, Datatype-Generic Programming, volume 4719 of
Lecture Notes in Computer Science, chapter 2, pages 72–149. 2007.

S. Holdermans, J. Jeuring, A. Löh, and A. Rodriguez. Generic views on
data types. In T. Uustalu, editor, Mathematics of Program Construction,
volume 4014 of Lecture Notes in Computer Science, pages 209–234.
2006.

P. Jansson and J. Jeuring. PolyP—a polytypic programming language
extension. In POPL ’97, pages 470–482, 1997.

R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design
pattern for generic programming. In Z. Shao and P. Lee, editors, TLDI,
pages 26–37. ACM, 2003. ISBN 1-58113-649-8.

Z. Luo. Computation and Reasoning: A Type Theory for Computer Science.
Oxford University Press, USA, May 1994.

P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis·Napoli, 1984.
C. McBride and J. McKinna. The view from the left. J. Funct. Program.,

14(1):69–111, January 2004.
P. Morris. Constructing Universes for Generic Programming. PhD thesis,

University of Nottingham, 2007.
P. Morris and T. Altenkirch. Indexed containers. In Twenty-Fourth IEEE

Symposium in Logic in Computer Science (LICS 2009), 2009.
P. Morris, T. Altenkirch, and N. Ghani. A universe of strictly positive

families. International Journal of Foundations of Computer Science,
20(1):83–107, 2009.

U. Norell. Functional generic programming and type theory. Master’s
thesis, Computing Science, Chalmers University of Technology, 2002.
Available from http://www.cs.chalmers.se/~ulfn.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
September 2007.

N. Oury and W. Swierstra. The power of Pi. In J. Hook and P. Thiemann,
editors, ICFP, pages 39–50. ACM, 2008. ISBN 978-1-59593-919-7.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In ICFP ’06, pages 50–
61, New York, NY, USA, 2006. ACM.

B. C. Pierce and D. N. Turner. Local type inference. In POPL’98, pages
252–265, 1998.

A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C.
d. S. Oliveira. Comparing libraries for generic programming in Haskell.
In A. Gill, editor, Haskell Symposium, pages 111–122. ACM, 2008.
ISBN 978-1-60558-064-7.

The Coq Development Team. The Coq Proof Assistant Reference Manual
Version 8.2, 2009.

W. Verbruggen, E. de Vries, and A. Hughes. Polytypic programming in
coq. In WGP ’08, pages 49–60, 2008.

W. Verbruggen, E. de Vries, and A. Hughes. Polytypic properties and proofs
in coq. In WGP ’09, pages 1–12, 2009.

S. Weirich and C. Casinghino. Arity-generic datatype-generic program-
ming. In PLPV ’10, pages 15–26, 2010.

12 2010/4/14

