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Abstract

In this paper I present a partial formalisation of a normaliser for type theory in Agda[Nor07]; extending
previous work on big-step normalisation[AC08,AC06]. The normaliser in written as an environment machine.
Only the computational behaviour of the normaliser is presented omitting details of termination.
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1 Introduction

This work is a small step towards the long-term goal of the author and many others
to internalise the syntax[Pol95] and semantics[Dyb95,BD08] of recent formulations
of type theory (with, for example, βη-definitional equality) and to write a type
checker for type theory in type theory[BW]. The meta-theory and design of type
theories is still a very active area 35 years after Martin-Löf’s early versions. Type
theory is described by Martin-Löf as being intended as a “full-scale system for
constructive mathematics”[ML98]. If this is to be taken seriously then it certainly
should cope with the mathematics with which it is most intimately connected: its
own metatheory. Internalising type theory puts great pressure on many aspects
of type theory: universe hierarchy’s; inductive-recursive definitions and equality.
It is not just the theory which is stretched either implementations are pushed to
their limits. I believe that internalising type theory’s own notions makes up an
unavoidable part of the continued development and refinement of type theory itself
and is a great test for its implementations. Type theory should eat itself.

We build on previous work on big-step normalisation[AC08,AC06] and extend
it to dependent types. The approach is as follows: 1. Define the well-typed terms
of the language; 2. Give a simple (but not obviously terminating) normaliser as
an environment machine; 3. Encode the normaliser as a big-step semantics and
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prove termination; 4. Augment the normaliser with the termination proof as an
extra argument to yield a structurally recursive normaliser representable as a type
theoretic function. For the purposes of this paper we stop short of this and focus
only on the simple normaliser formalised in Agda corresponding to steps 1 and 2.

1.1 Related Work

Previous work on internal type theory[Dyb95,BD08] has concerned internalising in-
tuitionistic model theory and proofs of normalisation by evaluation (NBE)[BS91].
Recently Danielsson[Dan06] gave an implementation of a normaliser for the Martin-
Löf Logical Framework in Agda-Light (a precursor to the version of Agda used
here). The normaliser is based on NBE. It is a considerable and impressive devel-
opement but it contains a number of loose ends. Firstly the soundness property of
the normaliser is not shown. Secondly the development uses features of uncertain
foundation. The inductive definition of semantic values is not strictly positive and
the there are uses of induction-recursion[DS01] which do not follow the pattern of
an inductive type given together with a function defined on its constructors.

Our syntax is in the style of categories with families[Dyb95,Hof97] and Martin-
Löf’s substitution calculus[ML92]. We diverge from the usual presentation of inter-
nal categories with families[Dyb95] mainly in that we include equality of contexts
and our type, term and substitution equalities are heterogeneous with respect to
their indices. Eg. We equate types in potentially different contexts. This, in part,
leads to the inclusion of context equality. We also postulate injectivity of Π-types
in the syntax.

Pollack formalised the syntax of type theory in his thesis[Pol95] and proved a
number of properties but not normalisation. Barras and Werner have formalised
the Calculus of Constructions in Coq[BW] and proved normalisation with the aim
of extending this to the full theory of Coq and providing a certified kernel. Another
close relative to this work is Typed Operational Semantics[Gog94].

1.2 Agda and notation

Agda is a dependently typed programming language. It supports inductive
families[Dyb91] and dependent pattern matching[Coq92]. It has an external checker
for termination. In this development we turn off the Agda’s termination checker and
write programs which are not structurally recursive with the intention of showing
termination later. It is not that Agda supports non-terminating functions or that it
implements a type theory that does. We are just allowed the benefit of the doubt.

We present our development in Agda syntax. For the most part it looks very sim-
ilar to Haskell. Infix (and mixfix) constructors are declared with underscores either
side _+_ and when used must be surrounded by space m + n. Implicit arguments
(arguments which can be inferred from use) are given in braces {a : A}. When they
cannot be inferred we supply them in braces f {B} a in the appropriate place or by
name f {B = B} a. The keyword forall allows us to omit the type of an argument
when quantifying when it can be inferred from use. Agda allows unicode names. We
also take some extra liberties not currently supported by Agda but only for the pur-
poses of this presentation. The complete Agda code is available online[Cha07]. We
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use implicit quantification to omit implicit arguments in definitions of constructors.
An example of this is the identity substitution which we write as id : Sub G G

when in current syntax we would have to write id : forall {G} -> Sub G G.
Agda supports overloading of data constructor names we take this a step further
overloading type constructor and function names.

1.3 Plan of the rest of the paper

In section 2 we introduce syntax for the Martin-Löf Logical Framework. See Hof-
mann’s excellent tutorial article[Hof97] for a detailed description of the Martin-Löf
Logical Framework and other type theories. The syntax is for the well-typed terms
so is also the axiomatic semantics for the system. Sections 3 and 4 cover the nor-
maliser. In section 3 we give a definition of weak head normal forms (which we call
values) and an evaluator from the syntax to values. Section 4 covers the definition
of βη-normal forms and gives a typed-directed quote function which takes values
and gives normal forms. In section 5 we extend the system by providing a code for
Π-types for the universe. Section 6 concludes the paper.

2 Syntax with Explicit Substitutions

The system presented here is the Martin-Löf Logical Framework with explicit sub-
stitutions. The judgments are as defined (mutually) as follows:

Con : Set -- Context
Ty : Con -> Set -- Type
Tm : forall G -> Ty G -> Set -- Term
Sub : Con -> Con -> Set -- Substitution

Notice that types are given together with (indexed by) their contexts and terms are
given together with (indexed by) their type and context. We have no definitions for
raw syntax. In type theory terms always have a type and by giving the constructors
of a type we explain what it means to be a term of that type.

Also for type theory (where the Martin-Löf LF is one such example), as we shall
see for coe, we cannot separate the equation syntax from the syntax of well-typed
terms. Hence the corresponding equality judgments must also be mutually defined:

_=_ : Con -> Con -> Set -- Equality of contexts
_=_ : Ty G -> Ty G’ -> Set -- Equality of types
_=_ : Tm G s -> Tm G’ s’ -> Set -- Equality of terms
_=_ : Sub G D -> Sub G’ D’ -> Set -- Equality of substitutions

Notice that this is the decidable definitional equality that a typechecker would
use. We do not consider propositional equality here. By including the definitional
equality and types and contexts in the syntax we are in effect encoding typing
derivations as part of the syntax.

We now explain one at a time how to construct elements of these eight sets.
Starting with contexts. Contexts are left-to-right sequences of types. We use de
Bruijn indices[dB72] so the contexts do not carry names. There are two ways to
construct a context; either it is the empty context or it is an existing context given
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together with a type from that context.

mutual
data Con : Set where

e : Con
_,_ : forall G -> Ty G -> Con

Types are indexed by contexts:

data Ty : Con -> Set where

The syntax is fully explicit about uses of the type (and context) coercions. These
correspond to the conversion rules in the traditional syntax. There is a constructor
for this even at the level of types. Given a type in context G and G and D are equal
contexts then we have a type in D.

coe : Ty G -> G = D -> Ty D

There is a constructor for explicit substitutions.

_[_] : Ty D -> Sub G D -> Ty G

In Danielsson’s presentation of the syntax of this system he does not include explicit
substitutions at the level of types instead choosing to define a type-level substitution
operation mutually with the syntax. His approach has the advantage of simplifying
the treatment of semantic equality and reduces the number of properties that must
be postulated in the syntax. However this cannot readily be extended to more com-
plex systems such as having a universe closed under Π-types which we consider in
section 5. The remaining constructors cover the universe (which contains only neu-
tral terms in the Logical Framework), embedding codes for types from the universe
into types and dependent functions (Π-types). Notice that the second argument
(the range) to P contains has a extra variable in its context (the domain).

U : Ty G

El : Tm G U -> Ty G

P : (s : Ty G) -> Ty (G , s) -> Ty G

Terms are indexed by context and type and include explicit constructors for con-
version and substitutions:

data Tm : forall G -> Ty G -> Set where
coe : Tm G s -> s = s’ -> Tm G’ s’
_[_] : Tm D s -> (ts : Sub G D) -> Tm G (s [ ts ])

Variables (de Bruijn indices[dB72]) are not singled out as a separate syntactic class
in the syntax. Instead we have top which is the first bound variable and then other
variables are obtained by applications of the weakening substitution (which is called
pop and is introduced ed below) (top [ pop s ],top [ pop s • pop t ], etc.) to
top. This treatment of variables is present in categorical treatments of type theory
such as categories with families[Hof97,Dyb91]

top : Tm (G , s) (s [ pop s ])

The categorical combinator for application is included rather than conventional
application as it simplifies the presentation of the syntax and evaluation. The
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standard notion of application is defined later as a convenience.

l : Tm (G , s) t -> Tm G (P s t)
ap : Tm G (P s t) -> Tm (G , s) t

Next are substitutions. Instead of presenting substitutions as just sequences of
terms and then defining identity and composition recursively we give constructors
for all the necessary operations. This allows the syntax to remain first-order.

data Sub : Con -> Con -> Set where
coe : Sub G D -> G = G’ -> D = D’ -> Sub G’ D’
id : Sub G G

pop : forall s -> Sub (G , s) G

_<_ : (ts : Sub G D) -> Tm G (s [ ts ]) -> Sub G (D , s)
_•_ : Sub G D -> Sub B G -> Sub B D

Some smart constructors are introduced as a notational convenience. These are just
simple non-recursive functions which compute to common uses of the constructors.
This actually makes our syntax inductive recursive but the smart constructors could
just be expanded to avoid this. We give only their type signatures here. The first
two are one place substitution on types and terms respectively. The next allows us
to apply El to a term whose type is the constant U applied to a substitution without
using a coercion directly. Whilst this type is equal to U according to the equality
judgement of our system it is not definitionally equal in the metatheory. Next is
conventional application (and a variation including substitutions) which is useful
for embedding neutral applications back into terms. Finally we have a weakening
substitution which allows us to push substitutions under binders more easily than
using pop and top directly.

sub+ : Ty (G , s) -> Tm G s -> Ty G

sub : Tm (G , s) t -> (a : Tm G s) -> Tm G (sub+ t a)
Els : {ts : Sub G D} -> Tm G (U [ ts ]) -> Ty G

_$_ : Tm G (P s t) -> (a : Tm G s) -> Tm G (sub+ t a)
_$s _ : {ts : Sub G D} -> Tm G (P s t [ ts ]) ->

(a : Tm G (s [ ts ])) -> Tm G (t [ ts < a ])
_↗_ : (ts : Sub G D)(s : Ty D) -> Sub (G , s [ ts ]) (D , s)

Having described the first four judgment forms we go on to consider their corre-
sponding equality judgments which are defined mutually as dictated by the coer-
cions. The definitions are quite long and we omit various details here. Many of
the rules that make up the equality relations might be described as boilerplate and
this has a variety of sources. Firstly there are rules for equivalence and congruences
for data constructors. Then there are rules induced by the explicit substitutions
interacting with the data constructors. The coercions induce coherence conditions
on types, terms, and substitutions similar to those present in heterogeneous families
of setoids. The remaining rules might be called computation rules and those are
what we focus on.

We omit the definition of context equality altogether. It is just the least con-
gruence on the type Con.

data _=_ : Con -> Con -> Set where
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Context equality is not always included in presentations of type theory and of its
models: Hofmann[Hof97] and Streicher[Str91] include it; Dybjer does not[Dyb95];
and Martin-Löf omits it from his presentations of type theory[ML84,ML98] but
includes it in the substitution calculus[ML92].

Type equality (and equality for terms and substitutions) can be represented
homogeneously or heterogeneously in the sense of whether we equate types in the
same context or different (but equal) contexts. Here it is presented heterogeneously
as it reduces some of the bureaucracy of dealing with coercions (for example we get
only one coherence condition) and the antisymmetry of the homogeneous version
makes it more difficult to write the normaliser. The notion of heterogeneous equality
is based on McBride’s treatment of propositional equality[McB99].

data _=_ : Ty G -> Ty G’ -> Set where

The type level coercion induces a coherence condition:

coh : (s : Ty G)(p : G = D) -> coe s p = s

We skip congruence rules and equivalence rules for type equality. Next are rules
that ensure that types interact appropriately with substitutions:

rid : {s : Ty G} -> s [ id ] = s

assoc : {ts : Sub G D}{us : Sub B G} ->
s [ ts ] [ us ] = s [ ts • us ]

U[] : {ts : Sub G D} -> U [ ts ] = U {G}
El[] : {t : Tm D U}{ts : Sub G D} ->

El t [ ts ] = Els (t [ ts ])
P[] : {ts : Sub G D} ->

P s t [ ts ] = P (s [ ts ]) (t [ ts ↗ s ])

Semantic application requires projection from equations between P-types so the
following constructors are added to the definitional equality. Danielsson’s simpler
treatment of type equality (no explicit substitutions at the level of types) avoids
this issue but it introduces induction-recursion into the definition of the syntax.

dom : {t : Ty (G , s)}{t’ : Ty (G’ , s’)} ->
P s t = P s’ t’ -> s = s’

cod : {t : Ty (G , s)}{t’ : Ty (G’ , s’)} ->
P s t = P s’ t’ -> t = t’

The term equality proceeds analogously to the type equality with rules for coherence,
congruence, equivalence and substitutions which are omitted. The remaining rules
are the computation rules: b,h and projection from a substitution:

data _=_ : Tm G s -> Tm G’ s’ -> Set where
b : {t : Tm (G , s) t} -> ap (l t) = t
h : {f : Tm G (P s t)} -> l (ap f) = f
top< : {ts : Sub G D}{t : Tm G (s [ ts ])} -> top [ ts < t ] = t

Omitting the same sets of rules for substitutions leaves the following rules:

data _=_ : Sub G D -> Sub G’ D’ -> Set where
lid : {ts : Sub G D} -> id • ts = ts
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pop< : {ts : Sub G D}{t : Tm G (s [ ts ])} ->
pop s • (ts < t) = ts

•< : {ts : Sub G D}{t : Tm G (s [ ts ])}{us : Sub B G} ->
(ts < t) • us = (ts • us < coe (t [ us ]) assoc)

poptop : (pop s < top) = id {G , s}

When defining each equality relation equations between the indices could have been
included. This can be avoided by defining the following (forgetful) operations which
recover these equations:

mutual
fog : {s : Ty G}{s’ : Ty G’} -> s = s’ -> G = G’
fog : {t : Tm G s}{t’ : Tm G’ s’} -> t = t’ -> s = s’
fog : {ts : Sub G D}{ts’ : Sub G’ D’} -> ts = ts’ -> G = G’

3 Values and Partial Evaluation

Values (weak-head normal forms or canonical objects) are indexed by syntactic types
and contexts. The definition is very similar to our simply-typed version[AC08]. It
seems possible to index values by value contexts and value types this leads to a
very heavily inductive-recursive definition of values where value contexts, value
types, values, the partial evaluator itself and various necessary properties must
be mutually defined. This approach simplifies some of the inevitable equational
reasoning imposed by the coercions but it is not clear if this is an advantage when
compared with the extra complexity of the definition.

The definition presented here only requires induction-recursion to provide em-
beddings from values to syntax. Inevitably values must appear in types due to
type dependency. On the other hand values are a subset of terms and given tool
support to express this or, perhaps, just a different formulation we might not need
the mutually defined embeddings.

First variables are defined and then values, neutral term and environments are
defined mutually accompanied and by their respective embeddings.

data Var : forall G -> Ty G -> Set where
vZ : Var (G , s) (s [ pop s ])
vS : forall t -> Var G s -> Var (G , t) (s [ pop t ])

Variables are defined as de Bruijn indices as they would be for simple types except
their types must be weakened so that they are in the appropriate contexts. Their
embedding operation is defined as follows:

emb : Var G s -> Tm G s

emb vZ = top
emb (vS t x) = emb x [ pop t ]

Except for the more sophisticated treatment of types the only addition to the simply-
typed definitions of values and neutral terms are the coercion constructors. As envi-
ronments are just sequences of terms we can easily define coercion coevs (mutually
with coherence coehs ) recursively and it does not play a role in the the actual
definition of values so they can be defined separately.
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mutual
data Val : forall G -> Ty G -> Set where

lv : Tm (D , s) t -> (vs : Env G D) ->
Val G (P s t [ emb vs ])

nev : NeV G s -> Val G s

coev : Val G s -> s = s’ -> Val G’ s’

Values are either closures, neutral terms or coercions.

emb : Val G s -> Tm G s

emb (lv t vs) = l t [ emb vs ]
emb (nev n) = emb n
emb (coev v p) = coe (emb v) p

Neutral terms are either variables, stuck applications or coercions.

data NeV : forall G -> Ty G -> Set where
var : Var G s -> NeV G s

app : {ts : Sub G D} -> NeV G (P s t [ ts ]) ->
(v : Val G (s [ ts ])) -> NeV G (t [ ts < emb v ])

coen : NeV G s -> s = s’ -> NeV G’ s’

emb : NeV G s -> Tm G s

emb (var x) = emb x
emb (app n v) = emb n $s emb v
emb (coen n p) = coe (emb n) p

Environments are simple sequences of values.

data Env (G : Con) : Con -> Set where
e : Env G e

_<<_ : forall {D s}(vs : Env G D) -> Val G (s [ emb vs ]) ->
Env G (D , s)

emb : Env G D -> Sub G D

emb (vs << v) = emb vs < emb v
emb {G = e} e = id
emb {G = G , s} e = emb e {G} • pop s

Therefore identity environment must be defined recursively:

mutual
vid : forall {G} -> Env G G

vid {e} = ...
vid {G , s} = ...

Due to the mutual definition of the environments and their embeddings each time
we define an operation that refers to environments (or values or neutral terms) we
must show that it interacts appropriately with embedding. This also means that
we are forced to completeness of the normaliser mutually with its definition. In the
case of the identity environment we require the following property which is proved
mutually with the definition of of vid:
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cohvid : forall {G} -> id {G} = emb (vid {G})
cohvid = ...

The definitions that follow makes heavy use of equational reasoning introduced
by coercions. To make the definitions more readable most of the equality proof
arguments to coercions have been replaced by _.

Evaluation for terms ev, substitutions evs , and semantics application vapp (of
value functions to value arguments) are mutually defined. The use of syntactic
types and explicit coercions forces us to define evaluation mutually with a coherence
property: evaluating the term in an environment and then embedding it back into
the syntax must give a term definitionally equal to the original term substituted by
the environment embedded back into the syntax.

mutual
ev : Tm D s -> (vs : Env G D) -> Val G (s [ emb vs ])
ev (coe t p) vs = coev (ev t (coevs vs _ _)) _
ev (t [ ts ]) vs = coev (ev t (evs ts vs)) _
ev top (vs << v) = coev v _
ev (l t) vs = lv t vs
ev (app f) (vs << v) = vapp (ev f vs) refl v

evs : Sub D S -> Env G D -> Env G S

evs (coes ts p q) vs = coevs (evs ts (coevs vs _ _)) _ _
evs (ts • us) vs = evs ts (evs us vs)
evs id vs = vs
evs (pop s) (vs << v) = vs
evs (ts < t) vs = evs ts vs << coev (ev t vs) _

The semantic application vapp has a very liberal type which takes values whose
types are equal to function types rather than actually are function types. This is
necessary for the coercion case: The value v in this case has an arbitrary type which
is equal to a function type and it cannot be show at this stage that this must be a
function type so instead we accumulate the coercions.

vapp : {ts : Sub G D} -> Val G’ r -> r = (P s t [ ts ]) ->
(a : Val G (s [ ts ])) -> Val G (t [ ts < emb a ])

vapp (lv t vs) p a = coev (ev t (vs << coev a _)) _
vapp (nev n) p a = nev (app (coen n p) a)
vapp (coev v p) q a = vapp v (trans p q) a

The corresponding coherence properties are defined mutually:

cohev : (t : Tm D s)(vs : Env G D) -> t [ emb vs ] = emb (ev t vs)
cohev = ...

cohevs : (ts : Sub D S)(vs : Env G D) ->
ts • emb vs = emb (evs ts vs)

cohevs = ...

cohvapp : {ts : Sub G D}(f : Val G’ r)(p : r = P s t [ ts ]) ->
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(v : Val G (s [ ts ])) ->
coe (emb f) p $s emb v = emb (vapp f p v)

cohvapp = ...

In the next section a type-directed quotation operation is required. For this reason
we need to define value types. Weak-head normal forms are exactly what is required
to perform type-directed operations as they tell you what the outer constructor is.
The definition of type values is quite simple. We have value versions of U and El,
and P is represented as a closure like l. We do not need a seperate constructor for
value coersions as these can be pushed under VEl or into the environment.

data VTy : Con -> Set where
VU : VTy G

VEl : Val G U -> VTy G

VP : forall s -> Ty (D , s) -> Env G D -> VTy G

emb : VTy G -> Ty G

emb VU = U
emb (VEl s) = El (emb s)
emb (VP s t vs) = P s t [ emb vs ]

Last is the definition of the evaluator for types and its coherence condition:

ev+ : Ty D -> Env G D -> VTy G

ev+ (coe s p) vs = ev+ s (coevs vs refl (sym p))
ev+ (s [ ts ]) vs = ev+ s (evs ts vs)
ev+ U vs = VU
ev+ (El s) vs = VEl (coev (ev s vs) U[])
ev+ (P s t) vs = VP s t vs

comev+ : (s : Ty D)(vs : Env G D) -> s [ emb vs ] = emb (ev+ s vs)
comev+ = ...

4 Normal forms and quote

The definition of bh-normal forms is defined mutually with neutral terms and again
with their corresponding embeddings back into the syntax. The types of the con-
structors neu and neel ensure that neutral terms are only appear at base type in
normal forms. We also require embeddings into values for the definition of quote but
these do not form part of the definition of normal forms so we omit them altogether.

mutual
data Nf : forall G -> Ty G -> Set where

ln : Nf (G , s) t -> Nf G (P s t)
neu : NeN G U -> Nf G U
neel : NeN G (El s) -> Nf G (El s)
ncoe : Nf G s -> s = s’ -> Nf G’ s’

nemb : Nf G s -> Tm G s
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nemb = ...

data NeN : forall G -> Ty G -> Set where
nvar : Var G s -> NeN G s

napp : NeN G (P s t) -> (n : Nf G s) -> NeN G (sub t (nemb n))
ncoe : NeN G s -> s = s’ -> NeN G’ s’

nemb : NeN G s -> Tm G s

nemb = ...

As quotation is type directed and the values are indexed only by syntactic types
an operation which replaces the type by (the result of embedding) its evaluated
counterpart is required. As before the proof arguments to coercions are omitted
and a coherence property is required.

mutual
replace : Val G s -> Val G (emb (ev+ s vid))
replace (lv t vs) = lv t (ev (emb vs) vid)
replace (nev n) = nev (nreplace n)
replace (coev v p) = coev (replace v) _

nreplace : NeV G s -> NeV G (emb (ev+ s vid))
nreplace (var x) = coen (var x) _
nreplace (app n v) =
coen (app (nreplace n) (coev (replace v) _)) _

nreplace (coen n p) = coen (nreplace n) _

cohreplace : (v : Val G s) -> emb (replace v) = emb v
cohreplace = ...
cohnreplace : (n : NeV G s) -> emb (nreplace n) = emb n
cohnreplace = ...

The definition of quote takes a weak-head normal form and gives a bh-normal form.
Quote for values is defined by (general) recursion on the type and is mutual with
neutral quote which is defined by recursion on the structure of neutral terms. We
require coherence properties for both:

mutual
quote : (s : VTy G) -> Val G (emb s) -> Nf G (emb s)
quote (VP s t vs) f =
ncoe (ln (quote

(ev+ t (evs (emb vs) (wks [ embs vs ]+) vid)
<< coev (nev (var vZ) _))

(replace (vapp (wk (s [ emb vs ]) (coev f _))
refl
(nev (var vZ))))))

_
quote VU (nev n) = neu (quote n)
quote VU (vcoe {s = s} v p) =
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ncoe (quote (ev+ s vid) (replace v)) _
quote (VEl s) (nev n) = neel (quote n)
quote (VEl s) (vcoe {s = s’} v p) =

ncoe (quote (ev+ s’ vid) (replace v)) _

cohquote : (s : VTy G)(v : Val G (emb s)) ->
nemb (quote s v) = emb v

cohquote s v = ...

nquote : Ne G s -> NeN G s

nquote (var x) = nvar x
nquote (app {s = s}{ts = ts} n v) =
ncoe (napp (ncoe (nquote n) P[])

(ncoe (quote (ev+ (s [ ts ]) vid) (replace v)) _)) _
nquote (coen n p) = ncoe (nquote n) p

cohnquote : (n : Ne G s) -> nemb (nquote n) = emb n
cohnquote = ...

We can now define the normaliser and its coherence condition:

nf : Tm G s -> Nf G (emb (ev+ s vid))
nf t = quote (replace (eval t vid))

cohnf : (t : Tm G s) -> t = emb (nf t)
cohnf = ...

Notice that the coherence property for the normaliser is the usual completeness
property for normalisation and follows from the coherence properties for eval, quote
and replace.

5 Extension

We add codes for Π-types in the universe by adding a constructor to terms

Pu : forall (s : Tm G U) -> Tm (G , El s) U -> Tm G U

and the following rule to type equality:

PEl : El {G} (Pu’ s t) = P (El s) (El t)

The value type is also extended with a new constructor:

Puv : forall (s : Tm D U) -> Tm (D , El s) U ->
(vs : Env G D) -> Val G (U [ emb vs ])

This presents a new problem with the definition of semantic application
vapp. It is defined by case on values of arbitrary type so there is a
case vapp (Puv s t vs) p a = ?. The equation p has the uninhabited type:
U = P s’ t’ but the type checker does not know that it is uninhabited. For this
reason we must define an eliminator for this impossible equation in the syntax and
carry it through to (neutral) values and (neutral) normal forms:
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bot : U {G} = P {G’} s t (r : Ty G’’) -> Tm G’’ r

botn : U {G} = P {G’} s t (r : Ty G’’) -> NeV G’’ r

nbot : U {G} = P {G’} s t (r : Ty G’’) -> NeN G’’ r

We must also define the following new equations:

botEl : (p : U {G} = P {G’} s t){t : Tm (G’ , s) t} ->
El {G} (bot p U) = El (coe (l t) (sym p))

bot[] : {ts : Sub G D}{p : U {G’} = P {G’’} s t} ->
bot p r [ ts ] = bot p (r [ ts ])

botapp : (p : U {G} = P {G’} s’ t’){a : Tm G’ s’} ->
coe (Pu s t) p $ a = bot p (P s’ t’) $ a

To define quote we need a more sophisticated treatment of elements of the type El s:
We need a semantic decoder. We have to be more specific about neutral codes so
we adapt the definition of value types to have a constructor for only neutral codes:

data VTy : Con -> Set where
VU : VTy G

NEl : NeV G U -> VTy G

VP : forall s -> Ty (D , s) -> Env G D -> VTy G

The decoder turns coded Π-types into real ones and deals with neutral codes, coer-
cions and the impossible case where the code is a λ-term.

decode : forall {ts : Sub G D} -> Val G’ r -> r = U [ ts ] -> VTy G

decode (Puv s t vs) p = VP (El s) (El t) (coevs vs _ _)
decode (lv t vs) p = NEl (botn _ U)
decode (nev n) p = NEl (coen n _)
decode (coev v p) q = decode v (trans p q)

There is also a coherence condition which states that the decoded type is equal to
the original. We must extend the evaluation, replacement and quote operations to
deal with the new eliminator but these are trivial changes.

6 Conclusions

It is fair to say that this presentation is somewhat heavy. However we are able to
present almost the complete code in this paper. We have only omitted things that
can be easily recovered or could potentially be derived automatically.

Another (rather more philosophical) criticism of this work is: Why on earth
would you write something that isn’t structurally recursive? It isn’t even a function!
In the end we do intend to write a structurally recursive function. We will do this
using the Bove-Capretta method[BC01] to define a new version of the normaliser
which is structurally recursive on its own call graph. Deriving this new function
from the original definition and defining the call graph is a tedious business and
one that we might hope could be done automatically. Given that this is the case
we emphasize the role of the original definition. Of course there is a step which we
cannot do automatically and that is to prove termination which is what gives us an
inhabitant of the call graph. Our intention here is to separate the different aspects
of the constructive definition of a function. This gives a clear advantage: We can
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present just one aspect in its entirety. Our development to this point is about 1000
lines and we have presented all but the most laborious aspects. Danielsson’s NBE
normaliser is an order of magnitude larger and presented in a similar programming
language. Our completed development is likely to be of similar size but we are able
to isolate an informative fragment and present it in a self contained way.

The fragment we isolate is the runtime or computational behaviour. It is inter-
esting that if one takes a function defined using the Bove-Capretta technique and
compiles it using Brady’s techniques[Bra05] (erasing runtime-irrelevant information)
one ends up with exactly the original function.

Another way of looking at our definition is to say that it is not the definition
of a normaliser but instead it is the specification of one. We have not defined an
evaluator but instead given some laws which an evaluator should obey. In [ACD08]
an algebraic description of values is given. In their case values are a syntactic
applicative structure with an evaluation operation. The axioms that must hold for
evaluation look suspiciously like our definitions of evaluators. As their notion of
values is untyped their definition bears a closer resemblance to our simply-typed
case than the one presented here.

It can be said of type theory and constructive mathematics in general that they
take computation as the most fundamental concept. More fundamental than either
writing a proof or a program is the concept that underlies both of them: that of an
algorithm. Normalisation by evaluation provides the semantics for type theory most
easily reconcilable with the constructive notion of computation. It explains type
theory using its own notion of computation that of function definition by structural
recursion. More traditional normalisation proofs based on small-step reduction
cannot avoid extolling the view that type theory’s notion of computation is in some
way inadequate and that reduction is more fundamental. Big-step normalisation
could be seen to represent a similar position. In our case it is the idea of computation
by an environment machine which we take to be more fundamental. Having said
this our method (by not stopping at just giving a big-step semantics and proving
that it terminates) reconciles this notion of computation with the more constructive
one in the end by adding termination information and it is our hope that by doing
this we do not have to reject definition by structural recursion as the notion of
computation which we hold most dear.

6.1 Future and ongoing work

Extending this presentation to include natural numbers and formalizing termination
and soundness of this program and its extensions are further work. I have been
rather timid about induction-recursion. I have used it only for embeddings and
these are defined by recursion on the mutually defined inductive types. In fact even
the mutual inductive definitions presented here (e.g. the presentation of the syntax)
fall outside Dybjer’s schemas for inductive families[Dyb91].
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